
CONCEPT: PRESSURE UNITS

• The SI Unit for **Pressure** is the _____ (Pa) named after the French mathematician Blaise Pascal.

EXAMPLE: What happens to the pressure if the same amount of gas molecules is transferred from a 5.0 L container to a 10.0 L container?

- a) It will increase
- b) It will decrease
- c) No change will be observed
- d) Not enough information

Pressure Unit Conversions

- Additional non SI units for pressure used by most chemists are _______, ______, or ________.
 - ☐ These units for pressure have their own pressure value, which can be related to one another.

Pressure Units			
Unit Name	Pressure Value	Unit Name	Pressure Value
Atmosphere (atm)		Pascal (Pa)	
Millimeters of Mercury (mmHg)		Kilopascal (kPa)	
		Bar	
Torr		Pounds per square inch (Psi)	

EXAMPLE: The pressure in Denver, Colorado (elevation 5280 ft), averages about 24.9 inHg. Convert this pressure into mmHg and atm.