CONCEPT: ACID AND BASE STRENGTH

- Recall: Strong Acids and Strong Bases are classified as _____ electrolytes.
 - □ While Weak Acids and Weak Bases are _____ electrolytes.
- Strong Acid: an acid that dissociates (ionizes) _____ in water and ____ a proton (H+) easily.
 - □ Weak Acid: only partially dissociates, donates a proton _____ readily, favors _____.

Strong Acid	Weak Acid			
H ₂ O H ₃ O ⁺ C ₁ -	H ₂ O H ₃ O ⁺ CN			
□ Dissociates completely □ Easily donates proton (H⁺) □ Favors product formation	□ Dissociates partially □ Less readily donates proton (H ⁺) □ Favors reactant formation			

- Strong Base: a base that dissociates (ionizes) _____ in water and has _____ affinity for protons.
 - □ **Weak Base:** only partially dissociates, has a _____ affinity for protons, favors _____.

Strong Base	Weak Base			
H ₂ O NaOH Na ⁺ OH	H ₂ O NH ₄ * OH			
 □ Dissociates completely □ High affinity for proton (H⁺) □ Favors product formation 	□ Dissociates partially □ Low affinity for proton (H ⁺) □ Favors reactant formation			

Strong Acids			Strong Bases				
НІ	Hydroiodic acid	HBrO ₄	Perbromic acid	LiOH	Lithium hydroxide	Ca(OH) ₂	Calcium hydroxide
HBr	Hydrobromic acid	HBrO ₃	Bromic acid	NaOH	Sodium hydroxide	Sr(OH) ₂	Strontium hydroxide
HCI	Hydrochloric acid	HCIO ₄	Perchloric acid	кон	Potassium hydroxide	Ba(OH) ₂	Barium hydroxide
H ₂ SO ₄	Sulfuric acid	HClO ₃	Chloric acid	RbOH	Rubidium hydroxide		
HNO ₃	Nitric acid	H ₃ O⁺	Hydronium ion	CsOH	Cesium hydroxide		

EXAMPLE: The following represent aqueous acid solutions. Identify the strong acid, weak acid and weakest acid.

CONCEPT: ACID AND BASE STRENGTH

Strength of Conjugate Acids & Bases

□ A strong acid will have a relatively conjugate base. - stronger the acid = the conjugate base - weak conjugate base has affinity for proton HCI (aq) + H ₂ O (liq) (aq) + (aq) strong acid conjugate base □ A weak acid will have a relatively conjugate base. - weaker the acid = stronger the conjugate base - stronger conjugate base has affinity for proton HCN (aq) + H ₂ O (liq) (aq) + (aq) weak acid conjugate base □ Stronger the base = conjugate acid □ weak conjugate acid readily donates proton □ Weaker the base = conjugate acid □ stronger conjugate acid donates proton EXAMPLE: Which of the following acids have relatively strong conjugate bases? a. HBrO ₄ b. HCN c. HNO ₃ d. HClO ₄	• There is an	relationship	between strength o	of acids & bas	es and their		
HCl (aq) + H ₂ O (liq) (aq) + (aq) conjugate base A weak acid will have a relatively conjugate base. - weaker the acid = stronger the conjugate base - stronger conjugate base has affinity for proton HCN (aq) + H ₂ O (liq) (aq) + (aq) conjugate base Stronger the base = conjugate acid	□ A strong ac	cid will have a relative	ely co	njugate base.			
A weak acid will have a relatively conjugate base. - weaker the acid = stronger the conjugate base - stronger conjugate base has affinity for proton HCN (aq) + H ₂ O (liq) (aq) + (aq) conjugate base - Stronger the base = conjugate acid - weak conjugate acid readily donates proton - Weaker the base = conjugate acid - stronger conjugate acid donates proton - Weaker the following acids have relatively strong conjugate bases?	- stro	onger the acid =	the conjugat	e base - w	eak conjugate b	ase has	affinity for proton
- weaker the acid = stronger the conjugate base - stronger conjugate base has affinity for proton HCN (aq) + H ₂ O (liq) (aq) + (aq) conjugate base conjugate acid readily donates proton Weaker the base = conjugate acid stronger conjugate acid donates proton EXAMPLE: Which of the following acids have relatively strong conjugate bases?		· · · · =	(liq) —	(a			
HCN (aq) + H ₂ O (liq) (aq) + (aq) conjugate base Stronger the base = conjugate acid weak conjugate acid readily donates proton Weaker the base = conjugate acid stronger conjugate acid donates proton EXAMPLE: Which of the following acids have relatively strong conjugate bases?	□ A weak aci	d will have a relativel	y c	onjugate base	е.		
weak acidconjugate base Stronger the base = conjugate acid _ weak conjugate acid readily donates proton Weaker the base = conjugate acid _ stronger conjugate acid donates proton EXAMPLE: Which of the following acids have relatively strong conjugate bases?	- wea	aker the acid = strong	er the conjugate b	ase - stron	nger conjugate b	ase has	affinity for proton
□ Weaker the base = conjugate acid □ stronger conjugate acid donates proton EXAMPLE: Which of the following acids have relatively strong conjugate bases?			(liq)	_			
EXAMPLE: Which of the following acids have relatively strong conjugate bases?	□ Stronger th	e base =	conjugate acid	□ weak co	njugate acid	readily do	nates proton
, , , ,	□ Weaker the	e base =	conjugate acid	□ stronger o	conjugate acid _	donates	proton
, , , ,							
a. HBrO ₄ b. HCN c. HNO ₃ d. HClO ₄	EXAMPLE: Which of	of the following acids	have relatively stro	ong conjugate	bases?		
	a. HBrO ₄	b. HCN	С	. HNO ₃	d. HC	IO ₄	
							•
PRACTICE: Which of the following is the strongest base?	PRACTICE: Which of	f the following is the s	trongest base?				
a. NO_3^- b. F^- c. Cl^- d. ClO_4^- e. H_2O	a. NO₃⁻	b. F-	c. Cl ⁻		d. ClO ₄ -	e. H ₂ O	

PRACTICE: Which of the following bases will have the weakest conjugate acid?

c. CH₃NH₂

d. NH₄OH

e. LiOH

b. KOCH₃

a. CH₃COOH

CONCEPT: ACID AND BASE STRENGTH

PRACTICE: Which of the following aqueous species will contain mostly reactants?

- a. CsOH
- b. HNO₃
- c. Sr(OH)₂
- d. HClO₃
- e. Mg(OH)₂

PRACTICE: Determine [OH-] in each base solution. If the base is weak, indicate the value that [OH-] is less than.

- a. 0.25 M NaOH
- b. 0.25 M NH₃
- c. 0.25 M Sr(OH)₂
- d. 1.25 M KOH

PRACTICE: Predict the direction of the following reaction:

$$HC_{2}H_{3}O_{2}\;(aq)\;\;+\;\;H_{2}O\;(liq)\;\;\underline{\hspace{1.5cm}} H_{3}O^{+}\;(aq)\;\;+\;\;C_{2}H_{3}O_{2}^{-}\;(aq)$$

- a. -----
- b. _____
- C. _____
- d. -