CONCEPT: SUPPLY AND DEMAND TOGETHER – QUANTITATIVE ANALYSIS

• We can use algebraic equations to find equilibrium price and quantity.

Plotting the equation of a demand curve on a graph:

$$P = 800 - 2Q_d$$

Quantity	Solve for Price	

Isolating Variables:

We may need to rearrange the equation to put the other variable by itself:

$$P = 800 - 2Q_d$$

Plotting the equation of a supply curve on a graph:

$$P = 200 + Q_s$$

Quantity	Solve for Price	

Isolating Variables:

We may need to rearrange the equation to put the other variable by itself:

$$P = 200 + Q_s$$

CONCEPT: SUPPLY AND DEMAND TOGETHER – QUANTITATIVE ANALYSIS

• We can find the equilibrium quantity and price from the equations of the demand and supply curves.

Step 1 (if needed): Rearrange the supply and demand equations so that both have the same isolated variable.

Step 2: Set the demand and supply curve equal to each other. At equilibrium, $Q_d = Q_s$, so use Q for both of them.

Step 3: Solve for the remaining variable using algebra.

Step 4: Use your answer from step two in either curve to solve for the other variable.

Demand	$P = 800 - 2Q_d$	$Q_d = 400 - \frac{1}{2}P$
Supply	$P=200+Q_s$	$Q_s = P - 200$

Step 2	
Step 3	
Step 4	

EXAMPLE: The supply and demand curves for ice cream are as follows:

$$P = 6 - \frac{1}{50}Q_d$$

$$Q_s = 150P - 100$$

What is the equilibrium price and quantity of ice cream?

- a. $P^* = \$1$, $Q^* = 50$
- b. P* = \$2, Q* = 200
- c. $P^* = \$3$, $Q^* = 350$
- d. $P^* = \$4$, $Q^* = 500$

PRACTICE: The supply and demand curves for a product are as follows:

$$Q_d = 10560 - 80P$$

$$P = \frac{1}{40}Q_s + 6$$

What is the equilibrium price and quantity of the product?

- a. $P^* = $60, Q^* = 5760$
- b. P* = \$70, Q* = 4960
- c. P* = \$80, Q* = 4160
- d. P* = \$90, Q* = 3360

CONCEPT: SUPPLY AND DEMAND TOGETHER – QUANTITATIVE ANALYSIS

• The equilibrium reached algebraically can be found on the graph as the ______ of supply and demand.

Demand	$P = 800 - 2Q_d$	$Q_d = 400 - \frac{1}{2}P$
Supply	$P = 200 + Q_s$	$Q_s = P - 200$

Price	Quantity Demanded	Quantity Supplied