CONCEPT: DNA POLYMERASES

- •The primary enzyme responsible for building new DNA strands are ______ polymerases.
 - □ Organisms contain ______ types of DNA polymerases with slightly different functions.
 - □ New DNA strands always built in the _____ → ____ direction (elongating from its free 3' ____ group).

DNA Polymerase Requirements

- •In prokaryotes, **DNA Polymerase** _____ is the primary enzyme for elongating/building new DNA Strands.
- •All DNA Polymerases have central requirements:
 - 1) a ______: the _____/parent DNA strand that acts as a guide for building new strands.
 - 2) a ______ point for DNA polymerase.
 - □ _____ enzyme builds RNA primers.
 - □ Ultimately the RNA primer is *converted to* ______ to be part of newly built DNA strand.

PRACTICE: If the sequence of the 5'-3' strand is AATGCTAC, the complementary sequence has the following sequence:

- a) 3'-AATGCTAC-5'.
- b) 3'-CATCGTAA-5'.
- c) 3'-TTACGATG-5'
- d) 3'-GTAGCATT-5'

CONCEPT: DNA POLYMERASES

DNA Polymerase Distinguishes Template from New Strand via Methylation

- Over time, the old DNA strands (templates) are ______ via regulatory processes in the cell.

 □ Methylation: addition of a methyl (-____) group.

 □ During DNA replication, DNA polymerase can _____ the old template from the new strand.
 - □ Template strand is *methylated* & new strand is _____ yet methylated.

PRACTICE: What is DNA methylation?

- a) The addition of ethyl groups (-CH₂-CH₃) to the sugar-phosphate backbone of DNA.
- b) The addition of ethyl groups (-CH₂-CH₃) to the adenine and cytosine bases of DNA.
- c) The addition of methyl groups (-CH₃) to the sugar-phosphate backbone of DNA.
- d) The addition of methyl groups (-CH₃) to the adenine and cytosine bases of DNA.

PRACTICE: Why is DNA methylation important in DNA replication?

- a) Methyl groups bind to and stop the replication of genes that the cell does not need.
- b) Methyl groups bind to and increase the replication of genes that the cell needs.
- c) Methyl groups bind to the old DNA strands so DNA polymerase can recognize the new DNA strands.
- d) Methyl groups bind to the new DNA strands so DNA polymerase can recognize the old DNA strands.