CONCEPT: THE LAC OPERON

•	Operon: inducible operon with _	th genes encoding enzymes that metabolize lactose for energy:			
	1) <i>lac</i>	2) Iac _	3) Iac		
□ Transcription & translation require a lot of energy, so cells only want to express lac operon genes when ne					1 .
∙The	active repressor protein () n				
	$\hfill\Box$ Only in the presence of	(& the absenc	e of glucose) is the lac oper	on transcribed.	
∙The	active repressor protein () n	normally <i>represses</i> trans	cription when bound to <i>lac</i>		

EXAMPLE: The Lac Operon in E. coli contains a single promoter & 3 genes required for lactose metabolism.

PRACTICE: The protein that binds to the operator of the *lac* operon to prevent transcription is encoded by which gene?

- a) lacI.
- b) lacY.
- c) lacA.
- d) lacZ.

PRACTICE: The *lac* operon is a(n) ______ operon that is typically _____.

- a) inducible; induced.
- b) repressible; repressed.
- c) inducible; repressed.
- d) repressed; inducible.

CONCEPT: THE LAC OPERON

In the Absence of Lactose

- •When **lactose** is not available to metabolize, _______represses the expression of genes in the *lac* operon.
 - □ **Lacl** binds to the *lac* operator & blocks *RNA polymerase* from initiating _____

EXAMPLE: In Absence of Lactose, Lacl is Active & Blocks Transcription.

In the Presence of Lactose

- ●When lactose is readily available to metabolize, it acts as an ______ molecule in the lac operon.
 - □ A derivative of lactose binds & ______Lacl so it cannot bind to the operator.
 - □ Allows *RNA polymerase* to initiate transcription of the *lac* operon.

EXAMPLE: In Presence of Lactose, LacI is Inactive, Allowing for Lac Operon Transcription.

CONCEPT: THE LAC OPERON

PRACTICE: In the *lac* operon, which of the following functions does the lactose molecule serve:

- a) It is the corepressor molecule.
- b) It is the repressor molecule.
- c) It is the inducer molecule.
- d) It serves no function in regulating the *lac* operon.

PRACTICE: If *E. coli* bacteria are grown in the presence of lactose:

- a) The repressor will bind the operator allowing transcription of the lac operon genes.
- b) The repressor will not bind the operator preventing transcription of the lac operon genes.
- c) The repressor will not bind the operator allowing transcription of the lac operon genes.
- d) The repressor will bind the operator preventing transcription of the lac operon genes.