CONCEPT: ABC TRANSPORTERS

ABC Transporters Provide Multidrug Resistance

● ATP-Binding-Cassette () Transporters: integral membrane proteins with > 1 ABC structural motif.
□ Pump substances across a membrane, their concentration gradient.
●All ABC Transporters share common <i>structural</i> elements:
1) Trans-Membrane Domains () which make the pore through the membrane.
2) cytosolic Nucleotide-Binding Domains () that bind & hydrolyze ATP (ATP binding cassette).
●Some called multidrug resistance () transporters, since they're responsible for resistance to multiple
□ In bacteria, MDR transporters confer antibiotic
√ In humans, P-glycoprotein () is an MDR transporter that removes anti-cancer drugs from tumor cells.
EXAMPLE: ABC Transporter.

PRACTICE: ABC transporters are a part of a superfamily of transporters that have two nucleotide binding domains that bind ______, which is necessary for primary active transport.

- a) ADP.
- b) Phosphate.
- c) ATP.
- d) GTP.
- e) AMP.

PRACTICE: What side of a membrane has a higher concentration of the toxin Limbricide after ABC transporter activity?

- a) Inside the cell.
- b) outside the cell.

PRACTICE: Which of the following statements is TRUE for BOTH P-type ATPases and ABC transporters?

- a) They each have two ATP-binding protein domains.
- b) They both contain a phosphorylated Asp residue.
- c) They both are examples of multi-drug resistant proteins that pump toxins out of the cell.
- d) They are both dependent on the presence of ATP.
- e) They both require ATP binding before substrate binding and transport.