CONCEPT: PROKARYOTIC FLAGELLAR MOVEMENT

• Recall: **motility** is the ability for an organism to _____ on its own.

•_____ or Flagellar Motility: the process of cell movement powered by rotation of flagella.

□ When flagella start to rotate in the _____ direction, the cell *stops* swimming.

EXAMPLE: Rotational direction of the flagellum controls the swimming motility of a monotrichous cell.

Runs and Tumbles

•A swimming cell typically moves in a pattern of stop-and-go repeats called _____ & tumbles.

1) Run: a _____ swimming movement of the cell as the flagella rotate.

2) _____: random, abrupt change in direction as the flagella rotate in the *opposite* direction.

EXAMPLE: The Run-and-Tumble method of swimming motility by a peritrichous bacterial cell.

•Like all other motors, rotation of the flagella requires _____ in the form of a *Proton Motive Force (PMF)*.

CONCEPT: PROKARYOTIC FLAGELLAR MOVEMENT

PRACTICE: Movement in bacteria

- a) Is directly to or away from a stimulus.
- b) Relies on the beating of cilia.
- c) Is often referred to as run and tumble.
- d) May involve pili.
- e) Includes many types of movement that utilize pili and flagella.

PRACTICE: "Tumbles" and straight-line "runs" are associated with:

- a) The action of fimbriae.
- b) How a pilus transfers DNA.
- c) Flagellar motility.
- d) Twitching motility.
- e) None of the above.

PRACTICE: A bacteria can rotate its flagellum clockwise or counterclockwise. If the bacterial cell wants to stop swimming, which direction will it rotate its flagellum?

- a) Clockwise.
- b) Counterclockwise.
- c) To stop moving the bacterium will not rotate its flagellum at all.