CONCEPT: GENOME VARIABILITY

- Over years scientists have discovered that different strains of a single species have high genome
- The genome of all strains within a species is composed of 2 elements:
 - 1) Pan-genome: _____ of the genes in every strain of a species.
 - 2) Conserved or _____ Genome: ONLY the genes that are conserved/shared by every strain of a species.

Mobile Genetic Elements Map

- High variability between genomes is significantly attributed to ______ Genetic Elements.
 - □ Mobile Genetic Elements (MGEs): segments of DNA that can _____ from one DNA molecule to another.
 - □ Examples include plasmids, transposons, genomic islands, & phage DNA.

CONCEPT: GENOME VARIABILITY

Plasmids

- •_____: circular double-stranded DNA molecules with an origin of replication allowing them to replicate in a cell.
 - □ *High copy-number* plasmids replicate _____ in a cell & *low-copy-number* plasmids replicate _____.
 - □ Carry various genes, some of which provide cells the ability to ______ a particular environment.
- Resistance Plasmids (_____ Plasmids): encode genes that confer resistance to antibiotics (R genes).
 - ☐ Most are *conjugative* plasmids containing genes required for DNA transfer by conjugation.

<u>Transposons in Prokaryotes</u>

- Transposons (Jumping Genes): pieces of DNA that ______ locations in a cell's genome by the process transposition.
 - : the *movement* of a transposon between locations of a cell's genome.
 - $\hfill\Box$ Transposons encode for the enzyme $\ensuremath{\textit{transposase}}$ which catalyzes the insertion.
 - □ Insertional _____: when the gene that the transposon "jumps" into becomes inactivated.

PRACTICE: Transposons encode the enzyme _____ which catalyzes the insertion of the transposon.

- a) DNA glycosylase.
- b) Excisionase.
- c) Transposase.
- d) DNA polymerase.
- e) Integrase.

CONCEPT: GENOME VARIABILITY

Genomic Islands

- **Genomic** _____: large regions of a bacteria's chromosome that originated in a *different* species.
 - □ Identified by a unique ratio of ______ base pairs compared to the rest of the chromosome.
 - Pathogenicity Islands: genomic islands containing genes giving the cell the ability to cause _____

PRACTICE: Which of the following answers about genomic islands is a true statement?

- a) Genomic islands create genetic variability within a species.
- b) Genomic islands originated from a different species than the one they currently reside in.
- c) Genomic islands can hold pathogenic genes which allows the bacteria they reside in to cause disease.
- d) All of the above are true statements about genomic islands.

Phage DNA

- Recall: _____are particles of DNA or RNA surrounded by a protein coat.
 - □ Certain types of phages insert their DNA into a host cell chromosome creating a *prophage*.
 - □ Prophage is replicated along with the remainder of the chromosome & passed on to the progeny of cells.

