CONCEPT: INTRODUCTION TO TRANSCRIPTION

● Recall: Transcription : process that builds using DNA within a <i>gene</i> as the coding template.
□ Genes : small units of that encode a product (ex. protein).
Specific sequences of DNA mark where transcription of a gene begins & ends:
1 Promoter: DNA sequence where transcription (site of RNA polymerase attachment).
Polymerase: an enzyme that polymerizes/builds from scratch (no primer needed).
2 Terminator: DNA sequence where transcription
Polymerase Coding Sequence Terminator 3' Upstream of gene Downstream of gene Downstream of gene
"stream" refers to DNA sequences in the direction of transcription.
□ "stream" refers to DNA sequences in the direction of transcription.

PRACTICE: Which of the following is the best definition of a gene?

- a) An RNA molecule transcribed from a sequence of DNA.
- b) A stretch of DNA that can be transcribed.
- c) A sequence of DNA where the process of transcription ends.
- d) A sequence of DNA that encodes a product like an RNA or a protein.
- e) A sequence of DNA where the process of transcription begins.

PRACTICE: Which of the following statements is false?

- a) Transcription is the process that creates an RNA product from a sequence of DNA.
- b) RNA polymerase builds RNA molecules from a DNA template.
- c) A promoter is a sequence of DNA within a gene where RNA polymerase can begin transcription.
- d) RNA polymerase, like DNA polymerase, requires a primer to begin RNA synthesis.

CONCEPT: INTRODUCTION TO TRANSCRIPTION

Overview of Transcription

●The 2 strands of DNA in a gene are referred to as: 1)	Strand	&	2)	Strand
□ RNA molecules have same sequence as the	DNA str	and (except replac	cing with U).
●During transcription, RNA is built from to end by pairing	free RNA r	nucle	otides on a D	NA template.
□ Nucleotide pairing occurs via Watson & Crick Base-Pairing:	T (0	r A) &	C

EXAMPLE: Determine the sequence for the template DNA strand and mRNA transcript given the following coding strand.

PRACTICE: The strand of DNA that has the same sequence as the RNA molecule being created during transcription is the:

- a) Lagging strand.
- b) Leading strand.
- c) Coding strand.
- d) Template strand.
- e) Parent strand.

PRACTICE: Transcription is sometimes described as a process in which RNA is "copied" from the template strand of DNA. This statement is potentially misleading _____.

- a) The nucleotides in RNA contain ribose and cannot be an exact copy of DNA.
- b) RNA molecules contain uracil instead of thymine and cannot be an exact copy of DNA.
- c) The RNA transcript has a sequence complementary to the template.
- d) The RNA transcript and the DNA template strand are antiparallel.
- e) All of the above.