
CONCEPT: CHEMOTAXIS

●Recall: Energy from ai	s used to move a	cell towards a more favorab	le environment using its flagella.
•Chemotaxis: the movement of a ce	II	_ chemo <u>attractants</u> &	from chemo <u>repellents</u> .
□ Chemoattractant: a chemi	cal that	motile cells (positive	e chemotaxis).
□ Chemorepellent: a chemic	al that	motile cells (negati	ve chemotaxis).
•taxis: the cell movement	nt towards (<i>positiv</i>	e) or away from (negative) li	ght.

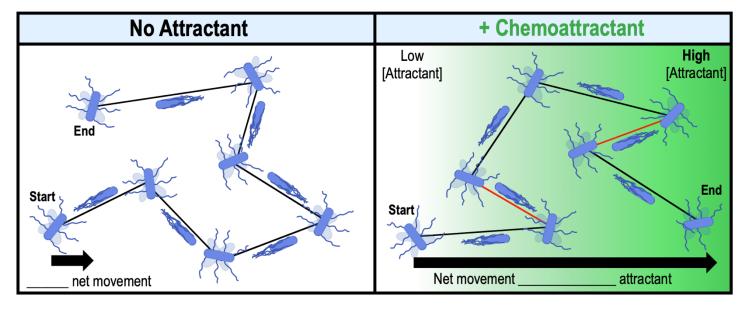
EXAMPLE: Chemotaxis of motile cells towards or away from certain chemicals.

•The path that motile cells take towards or away from something is _____ a continuous straight line.

PRACTICE: Structures external to the bacterial cell wall that is used for motility (movement) by chemotaxis:

- a) Endospores.
- b) Capsules.
- c) Flagella.
- d) Pili.
- e) Ribosomes.

PRACTICE: A bacterial cell moving away from the light would be an example of...


- a) Positive phototaxis.
- b) Negative phototaxis.
- c) Positive chemotaxis.
- d) Negative chemotaxis...

CONCEPT: CHEMOTAXIS

Cell Motility During Chemotaxis

• Recall: Motile cells use their flagella in a run-and-tumble mechanism, changing directions duri	ing each
●When an attractant is present, a cell begins to move in the direction of	concentration.
□ Cells sense the concentration change & respond by controlling the length of each	
□ If concentration gets, the runs become <i>longer</i> .	
☐ If concentration gets, the runs become <i>shorter</i> .	

EXAMPLE: Swimming motility of a peritrichous cell in the absence & presence of a chemical attractant.

•The _____ effect occurs when a cell encounters a repellent.

PRACTICE: A common attractant for bacteria is glucose sugar. Bacteria placed in a cup of water with dissolved glucose are going to change their movements depending on the concentration of the glucose. If the concentration of glucose increases the bacteria will...

- a) Have longer runs.
- b) Have an increased number of tumbles.
- c) Have shorter runs.

PRACTICE: If an E. coli bacterium finds itself moving away from an attractant how will its movements change?

- a) The runs will become longer and the tumbles less frequent.
- b) The runs will become shorter and the tumbles less frequent.
- The runs will become longer and the tumbles more frequent.
- d) The runs will become shorter and the tumbles more frequent.