Physical methods of controlling microbial growth include:

Dry Heat

- Dry Heat: heat that has _____ moisture or liquid content.
 - □ **Incineration**: destruction by _____ with a flame, turning cell components to ashes.
 - □ Hot Air Ovens: ovens that kill microbes with dry heat by destroying cell components & denaturing proteins.
 - □ Requires _____ temperature & _____ time to kill microbes than moist heat.
 - □ Advantage is that dry heat can be used on some moisture-sensitive items (ex. powder & oils).

Moist Heat

- Most microbes require specific temperatures for normal growth/reproduction; exceeding those temps destroys microbes.
- Moist Heat: heat that has _____ or liquid content.
 - □ Can kill microorganisms by irreversibly ______ their enzymes/proteins.
 - □ Moist heat generally requires ______ temperature & _____ time to kill microbes than dry heat.
- •Examples of moist heat include ______, pasteurization (brief heat treatment), & pressurized steam.
 - □ **Autoclave**: device using high temperatures & pressurized steam to sterilize heat-&-moisture-tolerant items.

Type of Heat	Temperature Time to Sterili	
Meat	121°C	600 mins (10 hours)
Moist Heat	121°C	15 mins

Moist Heat: Pasteurization

- Pasteurization: brief ______ of a product (ex. milk or wine) to disinfect it & make it safe for consumption.
 - ☐ Most pasteurization is by the ______-Temperature-_____-Time (HTST) method (ex. 165°C for 15sec).

EXAMPLE: HTST vs. UHT Pasteurization Methods.

PRACTICE: Pasteurization is what type of microbial control method?

- a) A physical, dry heat control method.
- b) A chemical, heat control method.
- c) A physical, moist heat control method.

Low Temperatures

Depending on the type of microbe, _____ temperatures can have varying effects, but generally _____ growth.
 □ Recall: Psyhcrophiles & psychrotrophs are exceptions that can grow at freezing temperatures below 0°C.
 ● Refrigeration generally _____ or slows growth of many pathogens & spoilage microbes.
 □ Freezing usually preserves foods & other products by _____ microbial growth, but it doesn't always kill.
 □ Recall: Preservation: process of delaying spoilage of perishable products (items likely to go bad quickly).

EXAMPLE: Refrigeration & Freezing can Control Microbial Growth.

Desiccation

◆Although some microbes can survive for years without water, most microbes require ______ to grow effectively.
 ◆Desiccation: process of _____ out or removing moisture/water from something.
 □ Generally, results in the _____ of microbial growth.
 □ Addition of solutes (ex. salt) creates a tonic environment to draw water out of cells & dehydrate them.

PRACTICE: How does desiccation control microbial growth?

- a) Desiccation removes all moisture from living cells, inhibiting or killing microbes.
- b) Desiccation drops the temperature so low, that only psychrophiles can survive.
- c) Desiccation utilizes ultra-heated steam to kill pathogenic microbes.
- d) Desiccation incinerates all living cells, killing all microbes.

Lyophilization

●Lyophilization: the process of	(freezing the product and then drying it in a vacuum)
$\hfill\Box$ Removes H_2O via sublimation (tra	ansition of H ₂ O directly from a solid to a gas state, without becoming liquid).
□ Widely used for	foods (ex. coffee, milk, meats, vegetables) without refrigeration
□ Overall quality of the product is usu	ually better than using typical drying methods.

Filtration

● Filtration: process of using filters with pores small enough to physically _____ microbes from liquids or air.

□ Microbes are too _____ to pass through pores of the filter & get trapped, separating them from the liquid/air.

□ Can be used to remove microbes from heat-sensitive fluids.

□ **High-Efficiency Particulate Air** (______) **Filter**: removes airborne particles & microbes from the air.

High Pressure Processing

∙High	Pressure Processing (): process using high		(~120,000 psi) to destroy microbes
	□ Can alter molecular struct	tures of	_ to kill microbes.	
	□ Can	products while preserving	ng features like flavors	s, colors & nutrient values.
	- Some microbes (ex. ands	sporos) can tolorate high	proceuros so it doos	alwaye etoriliza

<u>Irradiation</u>

•Irradiation, the process by which an ob-	ject is exposed to	; can be use	ed to destroy microbes.			
□ Radiation : emission or transmission of energy as <i>electromagnetic</i>			ng subatomic particles.			
•lonizing Radiation: penetrative radiation	on with sufficient energy to ren	nove electrons &	atom/molecules.			
□ Harms cells by destroying DNA, membranes, & creating Reactive Oxygen Species ().						
•lonizing Radiation is	penetrative & has	energy, so must be u	sed directly on microbes.			
□ Ultraviolet () light damag						
□ Microwayos can generate lethe	al amounts of					

PRACTICE: This method of physical microbial control combines the removal of all moisture with extremely low temperatures.

- a) Desiccation.
- b) Lyophilization.
- c) Irradiation.
- d) Pasteurization.

PRACTICE: How does irradiation control microbial growth?

- a) Some types of radiation can create lethal amounts of heat.
- b) Radiation penetrates cells causing damage to DNA and cell membranes.
- c) Radiation creates reactive oxygen species which damage cellular processes.
- d) All of the above are ways that irradiation controls microbial growth.

PRACTICE: A heat-sensitive liquid in a laboratory has been contaminated with *E. coli* bacteria. Which form(s) of microbial growth control could you use to remove this *E. coli* population from the liquid?

- a) Desiccating the liquid.
- b) Freezing the liquid.
- c) Filtering the liquid.
- d) Boiling the liquid.

PRACTICE: How does high pressure processing (HPP) control microbial populations?

- a) Extreme pressure damages the proteins within microbes until they can no longer function.
- b) Extreme pressure destroys DNA and membranes within microbes.
- c) Extreme pressure removes water from microbial cells via sublimation.
- d) Extreme pressure combines with extreme heat to pasteurize the product and kill microbes.