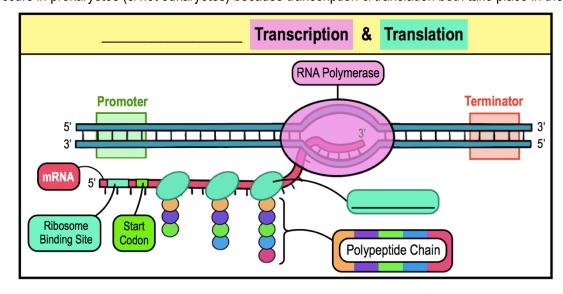

CONCEPT: PROKARYOTIC GENE EXPRESSION

Location of Transcription & Translation

- •In eukaryotes, transcription occurs in the ______ & translation occurs in the rough ER.
- ●In prokaryotes, transcription & translation both occur in the cell _____



PRACTICE: Which of the following statements is *true*?

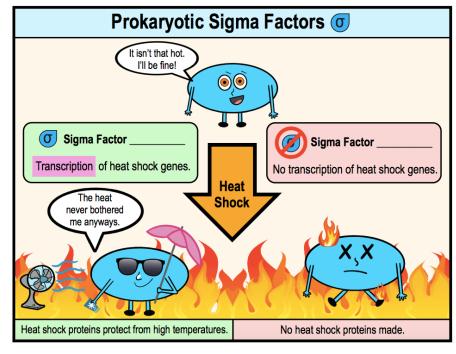
- a) In eukaryotes, transcription occurs in the nucleoid, while translation occurs in the rough ER.
- b) In prokaryotes, transcription and translation both occur in the cytoplasm.
- c) There is not difference between where transcription and translation occur in prokaryotes and eukaryotes.

Simultaneous Transcription & Translation in Prokaryotes

- Unlike eukaryotes, prokaryotic gene expression can start translation of an mRNA ______ it is fully synthesized.
 Free ribosomes in the _____ bind the mRNA and initiate translation while it is transcribed.
 _____ ribosomes can translate the same mRNA making prokaryotic gene expression very efficient.
- This only occurs in prokaryotes (& not eukaryotes) because transcription & translation both take place in the *cytoplasm*.

CONCEPT: PROKARYOTIC GENE EXPRESSION

PRACTICE: In prokaryotes, as soon as RNA polymerase synthesizes the 5' end of mRNA, ribosomes come in and initiate translation before transcription is completed. This is called _____.


- a) Simultaneous transcription & translation.
- b) Post-transcription.
- c) Co-transcription.
- d) Coupled transcription and translation.
- e) Co-translation.

Prokaryotic Sigma (σ) Factors

Recall: Prokaryotic transcription initiation requires a	factor to bind the promoter sequence.
---	---------------------------------------

- □ Cells have many different sigma factors that recognize _____ promotors.
- □ *Standard* sigma factors are used for expressing genes during *routine* growth.
- •_____sigma factors: recognize different promotors & controls expression of alternative gene groups.

EXAMPLE: Alternative sigma factor controls the expression of a specific gene group during heat shock in bacterial cells.

Gene Groups Regulated by Alternative Sigma Factors	
1 Heat Shock	Charles House
② Stationary Phase Survival	(8)
③ Nitrogen Assimilation	
4 Flagellar Synthesis	
(5) Misfolded Protein Response	And the second
6 Iron transport & Uptake	²⁶ Fe

PRACTICE: _____ allows RNA polymerase to recognize a specific promoter sequence of a gene.

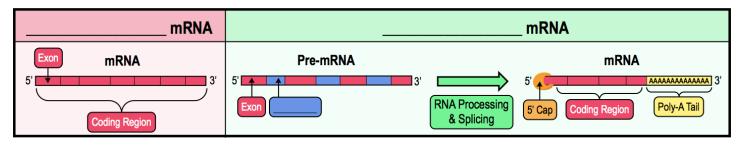
a) Rho factor.

d) Alpha subunit of RNA polymerase.

b) Omega factor.

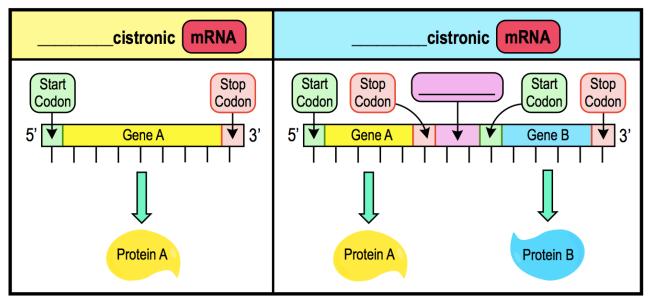
- e) Sigma factor.
- c) Beta subunit of RNA polymerase.

CONCEPT: PROKARYOTIC GENE EXPRESSION


PRACTICE: During which stage of bacterial transcription are sigma (σ) factors involved?

- a) Initiation.
- b) Elongation.

- c) Termination.
- d) Splicing.


Prokaryotic vs. Eukaryotic mRNA

- Recall: Eukaryotic mRNAs must be processed after transcription (like the 5' cap, poly-A tail, & _____ removal).
 - □ Prokaryotic mRNAs do _____ have *introns* so they don't require processing after transcription.

Monocistronic mRNA vs. Polycistronic mRNA

- Eukaryotes only make _____cistronic mRNA whereas prokaryotes make either mono- OR _____cistronic mRNA.
 - 1) **Monocistronic:** mRNA carrying only _____ gene.
 - 2) Polycistronic: mRNA carrying _____ genes.
 - □ Contain _____ (random non-coding sequences) between genes.

PRACTICE: "Cistron" is another word for "gene". Which of these answers are characteristics of polycistronic mRNA?

a) Only found in prokaryotes.

- c) Single mRNA strand can be translated into many proteins.
- b) Single mRNA strand, carrying multiple genes.
- d) All of the above are characteristics of polycistronic mRNA.