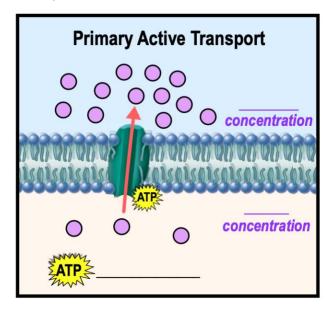

CONCEPT: ACTIVE TRANSPORT

• ______ types of active transport that require ______ since molecules are transported against their gradient.

1 _____ Active Transport: directly driven by energy source (such as _____ hydrolysis).

2 _____ Active Transport: directly driven by another molecule's concentration _____



Primary Active Transport

• Primary Active Transport: an _____-driven process transporting molecules against their concentration gradient.

□ Directly driven by energy derived from ATP *hydrolysis*.

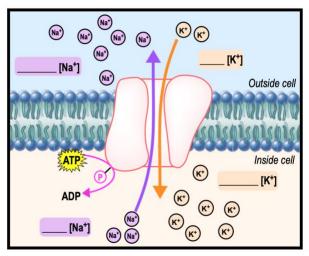
□ Used to *generate* & *maintain* important concentration ______ for cell survival.

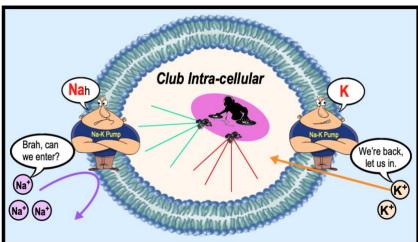
EXAMPLE: What is the main difference between active transport and facilitated diffusion?

- a) Facilitated diffusion uses proteins, but active transport does not.
- b) Active transport uses ATP to power transport, but facilitated diffusion does not.
- c) Active transport occurs across the plasma membrane, but facilitated diffusion does not.
- d) Active transport and facilitated diffusion both use proteins to move substances against their concentration gradient.

CONCEPT: ACTIVE TRANSPORT

PRACTICE: The force driving simple diffusion is ______, while the energy source for active transport is _____.


- a) a concentration gradient; ADP.
- b) a concentration gradient; ATP hydrolysis.
- c) transmembrane pumps; an electrochemical gradient.
- d) phosphorylated carrier proteins; ATP.


Primary Active Transport: Na⁺/K⁺ Pump

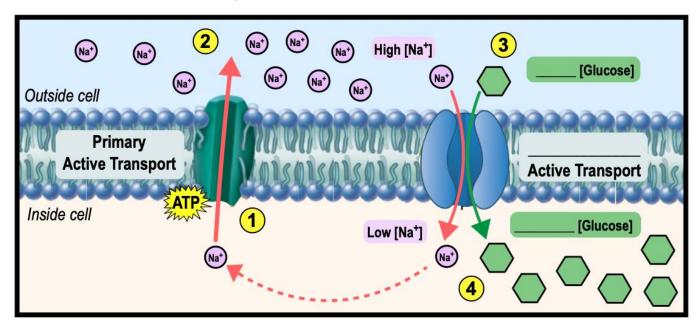
•An example of _____ active transport that moves Na⁺ & K⁺ ions in *opposite* directions (antiporter).

□ _____ ions are *exported* while ____ ions are *imported* (pump-K+-in).(

PRACTICE: A sodium-potassium pump ______.

- a) Transports 3 potassium ions out of a cell and 2 sodium ions into a cell and produces a molecule of ATP.
- b) Transports 3 sodium ions out of a cell and 2 potassium ions into a cell using energy from ATP hydrolysis.
- c) Transports 3 potassium ions out of a cell and 2 sodium ions into a cell using energy from ATP hydrolysis.
- d) Transports 3 sodium ions out of a cell and 2 potassium ions into a cell and generates an ATP in each cycle.

PRACTICE: Which of the following defines the type of transport by the sodium-potassium pump?


- a) Active transport through a symporter.
- b) Passive transport through a symporter.
- c) Active transport through an antiporter.
- d) Passive transport through an antiporter.

CONCEPT: ACTIVE TRANSPORT

Secondary Active Transport

• Recall: Secondary active transport	is directly driven by a concentration	instead of ATP hydrolysis
□ HOWEVER, its indirectly of	driven by Primary Active Transport (since c	concentration gradients are built by PAT
• steps to Na+-Glucose Seco	ndary Active Transport:	
1 Na+ is transported against its concentration gradient using		active transport.
2 Higher concentration of N	a+ is generated on the of t	the cell.
3 Glucose has a higher cor	centration the cell than	outside.
4 Na+ transportation	its gradient "powers" Glucose trans	sport its gradient.

EXAMPLE: The Sodium-Glucose Cotransporter.

PRACTICE: How are primary and secondary active transport related?

- a) They both use ATP to move molecules.
- b) Primary active transport establishes a concentration gradient, but secondary active transport doesn't.
- c) Secondary active transport uses the concentration gradient established by primary active transport.
- d) Primary active transport moves one molecule, but secondary active transport moves two.
- e) None of the above.