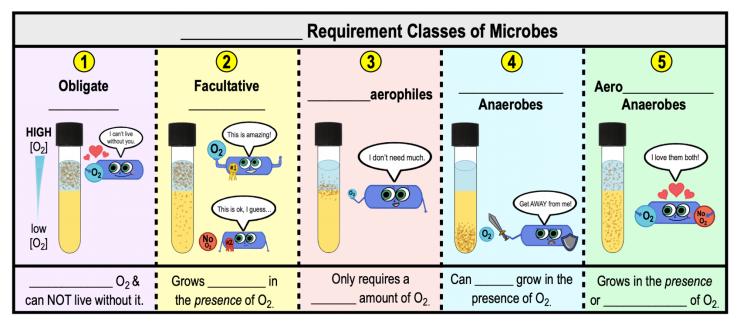

CONCEPT: OXYGEN REQUIREMENTS FOR MICROBIAL GROWTH


All organisms that utilize chemical energy require a final electron _______ for the Electron Transport Chain.
In many microbes, the final electron acceptor is _______ (O₂).
______: microbes that require O₂ & grow where it is abundant, called an aerobic environment.
Anaerobes: microbes that grow where little to no O₂ is present, called an environment.

EXAMPLE: Aerobes vs. Anaerobes.

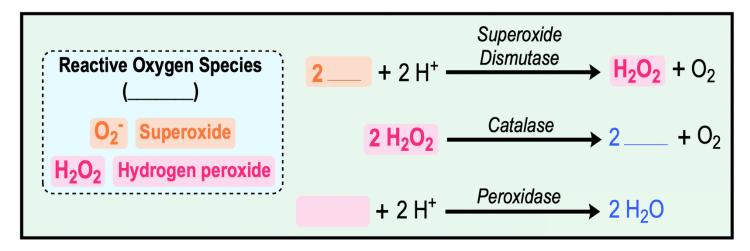
Oxygen Requirement Classes of Microbes

Microbes are classified into _____ groups based on their requirement for O₂.

PRACTICE: Organisms that require oxygen for metabolism are referred to as:

- a) Facultative aerobes.
- b) Obligate aerobes.
- c) Facultative anaerobes.
- d) Microaerophiles.

CONCEPT: OXYGEN REQUIREMENTS FOR MICROBIAL GROWTH


PRACTICE: Organisms that are indifferent to the presence of oxygen are:

- a) Aerotolerant anaerobes.
- b) Facultative anaerobes.
- c) Obligate aerobes.
- d) Microaerophiles.

Reactive Oxygen Species

●Aerobes that require O₂ ge	nerate <i>toxic</i> der	ivatives of oxygen called _		oxygen species.
□ Reactive oxygen	species (): highly reactive oxygen	molecu	les that cause damage to the cell.
□ Examples of ROS	include super_	(O ₂ -) & hydroge	en	oxide (H ₂ O ₂).
•All aerobes produce enzyn	nes that <i>protect</i> t	the cell from ROS:		
□ Superoxide		_ (SOD): converts 2 superc	oxide m	olecules into O2 & Hydrogen peroxide
	: converts 2 hydrogen peroxide molecules into O ₂ & 2 molecules of water.			
□ Peroxidase: conv	verts hydrogen p	peroxide into		

EXAMPLE: Enzymes of aerobic organisms protect the cell by converting reactive oxygen species to O₂ and water.

PRACTICE: The enzyme(s) that deal with toxic oxygen-containing molecules is/are

a) Glycolase.

d) Cytochrome oxidase.

b) Catalase.

e) B&C.

c) Superoxide dismutase.

f) B & D.