CONCEPT: GENETIC CODE - Genetic Code: a table that reveals how DNA/RNA encode the sequence of amino acids in a protein. - □ Relatively universal across all organisms but can have some differences. - □ Analyzes one _____ at a time, each which reveals one amino acid. ## How to Use the Genetic Code - •Using the genetic code is a _____-step process: - 1 Use the *coding* DNA sequence to reveal the mRNA sequence (replacing T with U). - 2 Identify the ____nucleotide codon frames within the mRNA transcript (including start & stop codons). - (3) Identify the amino acid that corresponds with each codon until a _____ codon is reached. - •The genetic code shows the _____ letter (left side) _____ letter (top) and _____ letter (right side) of all possible codons. **EXAMPLE:** Determine the polypeptide sequence from the following DNA sequence: **PRACTICE:** The redundancy of the genetic code is a consequence of _____. - a) Having more codons than amino acids. - b) Having four different letters (As, Cs, Gs, and Us) in the codon alphabet. - c) Having fewer codons than there are amino acids. - d) Each codon having a single amino acid. ## **CONCEPT: GENETIC CODE** **PRACTICE:** A particular triplet of bases in the template strand of DNA is 5'-AGT-3'. What would be the corresponding codon for the mRNA that is transcribed? a) 3'-UCA-5'. c) 5'-TCA-3'. b) 3'-UGA-5'. d) 3'-ACU-5'. **PRACTICE:** A particular triplet of bases in the coding sequence of DNA is AAA. The anticodon on the tRNA that binds the mRNA codon is _____. a) TTT. c) UUU. b) UUA. d) AAA. # Use the codon table on the right to answer the following questions: **PRACTICE:** Which of the following sequences of nucleotides are possible in the template strand of DNA that would code for the polypeptide sequence Phe–Leu–IIe–Val? - a) 5'-TTG-CTA-CAG-TAG-3'. - b) 5'-AUG-CTG-CAG-TAT-3'. - c) 3'-AAA-AAT-ATA-ACA-5'. - d) 3'-AAA-GAA-TAA-CAA-5'. | Second | Letter of | Coc | lon | |--------|-----------|-----|-----| |--------|-----------|-----|-----| | | | U | С | Α | G | | | |-----------------------|---|--------------------------------|--------------------------|---------------------------------|---------------------------------|---------|-------------| | First Letter of Codon | U | UUU Phe UUC Leu | UCU
UCC
UCA
UCG | UAU Tyr UAC Stop UAG Stop | UGU Cys
UGC Stop
UGG Trp | UCAG | | | | С | CUU
CUC
CUA
CUG | CCU
CCC
CCA
CCG | CAU His
CAC GIn | CGU
CGC
CGA
CGG | UCKG | nira Letter | | | A | AUU
AUC
AUA
AUG Start | ACU
ACC
ACA
ACG | AAU
AAC
AAA
AAG
Lys | AGU
AGC
AGA
AGG
Arg | U C A G | r of Godon | | | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU Asp
GAC GIU | GGU
GGC
GGA
GGG | U C A G | Ĭ | **PRACTICE:** What amino acid sequence will be generated, based on the following mRNA codon sequence? 5'-AUG-UCU-UCG-UUA-UCC-UUG-3' - a) Met-Arg-Glu-Arg. - b) Met-Glu-Arg-Arg-Glu-Leu. - c) Met-Ser-Leu-Ser. - d) Met-Ser-Ser-Leu-Ser-Leu. ### Second Letter of Codon | | | U | С | Α | G | | | |-----------------------|---|--------------------------------|--------------------------|---------------------------------|---------------------------------|---------|------------| | First Letter of Codon | U | UUU Phe UUC Leu UUG Leu | UCU
UCC
UCA
UCG | UAU Tyr UAC Stop UAG Stop | UGU Cys
UGC Stop
UGA Trp | ∪c∢g | | | | С | CUU
CUC
CUA
CUG | CCU
CCC
CCA
CCG | CAU His
CAC GIn | CGU
CGC
CGA
CGG | ∪ C ≪ G | ייט בפונפו | | | A | AUU
AUC
AUA
AUG Start | ACU
ACC
ACA
ACG | AAU
AAC
AAA
AAG
Lys | AGU
AGC
AGA
AGG
Arg | U C A G | | | | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU Asp
GAC GIU | GGU
GGC
GGA
GGG | UCAG | | Third Letter of Codon