- Recall: Transduction: horizontal DNA transfer between cells mediated by a bacteriophage virus (or phages).
 - bacterial obligate intracellular parasite made of DNA or RNA packed into a protein coat.
 - □ Phage infects cell, replicates, & _____ cell so new phage particles are released.
- Transduction results from an _____ where bacterial DNA is packaged into the phage creating a transducing particle.
 - □ Transducing Particle: defective phage carrying _____ DNA instead of its own.

Types of Transduction

- There are 2 main types of *transduction*:
 - 1) Generalized: transducing particle ONLY contains ______ (not phage) DNA.
 - 2) **Specialized:** transducing particle contains ______ bacterial & phage DNA.

PRACTICE: Transduction is a form of horizontal gene transfer which requires a carrier for the genetic information being transferred. What is this carrier and what is it made of?

- a) Transduction particle made of a human virus carrying bacterial DNA.
- b) Transformation particle made of bacteriophage carrying human DNA.
- c) Transduction particle made of a bacteriophage carrying bacterial DNA.
- d) Transduction particle made of a bacteriophage carrying viral DNA.

1) Generalized Transduction

- Recall: ______ Transduction: transducing particle ONLY contains bacterial (not phage) DNA.
 Can transfer any of the general genes of the donor bacterial cell.
 Phage infects donor cell where it constructs new phage particles & ______ particles (by mistake).
 - □ Transducing particle attaches to recipient & injects donor DNA that ______ into the cell's chromosome.

PRACTICE: Generalized transduction includes all of the following steps except which of these answers?

- a) Donor DNA integrates into the recipient cell's chromosome.
- b) The recipient cell takes in naked DNA from the environment.
- c) The donor cell is infected by a bacteriophage.
- d) The donor cell creates transduction particles containing donor cell DNA.

2) Specialized Transduction

Recall:	call: Transduction: transducing particle contains BOTH bacterial & phage DNA.	
□ Only transfers very spe	ecific (or specialized) genes of the	donor bacterial cell.
●Phage DNA integrated into the	donor cell's chromosome generate	s a
□ Prophage: phage DNA that is		_ in a cell's chromosome.
●When prophage is excised, part of the donor cell's		DNA is excised with it.
□ Phage assembly produ	ices transducing particles carrying	phage & bacterial/donor DNA.
□ Injected bacterial DNA	may into the	recipient's chromosome & phage DNA is degraded.

PRACTICE: Which of the following processes results in a transducing particle?

- a) Transformation.
- b) Transduction
- c) Conjugation.
- d) DNA replication.

PRACTICE: A prophage is:

- a) Viral DNA that has been incorporated into the bacterium's DNA.
- b) A phage carrying bacterial DNA.
- c) Donor DNA that has been incorporated into the recipient's DNA.
- d) A phage carrying bacterial and viral DNA.

PRACTICE: Which of these answers is a major difference between generalized and specialized transduction?

- a) The types of genes that are transferred between donor and recipient bacteria.
- b) The type of DNA found in the transducing particles.
- c) The presence of prophage DNA.
- d) All of the above are major differences between generalized and specialized transduction.

PRACTICE: In both generalized and specialized transduction only one cell survives this process. Which cell does not survive the process of transduction and why?

- a) The recipient cell lyses after it binds with the transducing particle.
- b) The donor cell lyses after being infected by the bacteriophage.
- c) The transducing cell degrades after phage DNA incorporates into the cell's chromosome.
- d) All of the cells survive the process of transduction.

PRACTICE: How are the processes of bacterial transformation and bacterial transduction similar?

- a) Transformation and transduction transfer DNA between cells via a bacteriophage carrier.
- b) Only competent cells can perform transformation and transduction.
- c) Both transformation and transduction are a form of horizontal gene transfer.
- d) All of the above are similarities between transformation and transduction.