CONCEPT: MUTANT DETECTION

• Scientists can identify mutants using two different methods of detection:

1) Direct Selection: only promotes growth of selectable mutants (parents) to select mutant directly & easily.				
□ Does NOT work for selecting		_ (since prototrophs always grow where auxotrophs grow).		
2) Indirect Selection: r	mutants & parents grow,	so mutants mus	t be <i>indirectly</i> sele	cted amongst crowd.
□ Typically, a more tedic	ous method only used wh	nen required for i	dentifying	selectable mutants.
□ Indirect identification o	an be accomplished via	the method rent	ica plating	

PRACTICE: Which of the following is a major difference between direct and indirect selection of mutants?

- a) Direct selection finds selectable mutants while indirect selection finds non-selectable mutants.
- b) Direct selection is able to find auxotroph mutants while indirect selection cannot.
- c) Direct selection only allows the selected mutants to grow while indirect selection allows parent cells and mutants to grow.
- d) Direct selection is a more tedious form of mutant selection than indirect mutant selection.
- e) A and C.
- f) B and D.

PRACTICE: A scientist has a population of His+ prototroph and His- auxotroph cells and wants to select and separate the auxotrophs from the prototrophs. Which form of selection should the scientist use?

- a) Indirect selection.
- b) Auxotroph selection.
- c) Direct selection.
- d) Any of the above forms of selection can be used.

CONCEPT: MUTANT DETECTION

Replica Plating

- Replica Plating: technique used to indirectly select for ______-selectable mutants (cannot be directly selected).
- •Involves a series of _____ steps:
 - 1) Plate auxotrophs & prototrophs onto ______plate & press master plate onto sterile velvet fabric.
 - 2) Use velvet fabric to inoculate _____ *replicate* agar plates (nutrient agar & minimal media).
 - 3) Plates are incubated then observed:
 - Prototrophs grow on ______ nutrient agar & minimal media plates.
 - □ Auxotrophs _____ grow on the nutrient agar (does NOT grow on minimal media).

PRACTICE: Replica plating is an example of which type of mutant selection?

a) Auxotroph selection.

c) Direct selection.

b) Indirect selection.

d) Secondary selection.

PRACTICE: What types of bacteria will be growing on the nutrient agar and minimal media at the end of a replica plating experiment?

- a) The nutrient agar will possess prototroph bacteria, while the minimal media will possess auxotroph bacteria.
- b) The nutrient agar will possess both prototroph & auxotroph bacteria, while the minimal media will possess prototroph bacteria.
- c) The nutrient agar will possess auxotroph bacteria, while the minimal media will possess the prototroph bacteria.
- d) The nutrient agar will possess auxotroph bacteria, while the minimal media will possess both prototroph & auxotroph bacteria.

CONCEPT: MUTANT DETECTION

PRACTICE: Why do prototroph bacteria grow on minimal media but auxotroph bacteria do not?

- a) The minimal media does not possess the growth factor the auxotrophs need to grow.
- b) The minimal media does not possess growth factors, but prototrophs do not require growth factors to grow.
- c) The prototrophs outcompete the auxotrophs for the minimal nutrients found in minimal media.
- d) Prototrophs and auxotrophs are not able to grow together on the same plate.
- e) A and B.
- f) C and D.

Based on the image above answer the following two questions:

PRACTICE: Which of the following colonies of bacteria are composed of His- auxotroph bacteria?

- a) A, C, D, F, & H.
- b) B, E, & G.
- c) A, B, E, & F.
- d) All of the colonies are composed of His- auxotroph bacteria.

PRACTICE: What characteristics are true about the colonies living on the minimal media plate?

- a) These colonies do not require histidine to grow.
- b) These colonies are composed of His+ prototroph bacteria.
- c) These colonies do not require growth factors to grow.
- d) There are not His- auxotroph bacteria present in these colonies.
- e) All of the above statements about the colonies living on the minimal media are true.