CONCEPT: OSMOLARITY FACTORS OF MICROBIAL GROWTH

•Recall: concentrations control the direction of osmosis across a cell membrane.		
□ Water always flows from	tonic to	tonic solutions.
□ Solutes such as	(NaCl) can interact with	water molecules which the cell can no longer use.

Salt Tolerant Classes of Microbes

- Different microbes have different tolerances to salt concentrations in their environment:
 - 1 Non-halotolerants: can _____ tolerate moderate salt concentrations.
 - 2 Halo*tolerants*: can _____ moderate salt concentrations (like your skin).
 - 3 Halophiles: require _____ levels of salt (between 1-14%) to survive (marine bacteria).
 - **4** Extreme Halophiles: require very high levels of salt (______ than 15%) to survive.

PRACTICE: An organism that requires an environment of high salt concentration describes an *Extreme*:

- a) Halophile.
- b) Thermophile.
- c) Acidophile.
- d) Alkaliphile.

CONCEPT: OSMOLARITY FACTORS OF MICROBIAL GROWTH

PRACTICE: A cell is most likely to experience plasmolysis (contraction or shrinking of the cell) when:

- a) The solute concentration inside of the cell is equal to the solute concentration outside the cell.
- b) The solute concentration inside of the cell is less than the solute concentration outside of the cell.
- c) The solute concentration inside of the cell is greater than the solute concentration outside of the cell.

PRACTICE: All organisms have specific environmental conditions in which they thrive. Most organisms cannot live in extremely salty environments. If a bacterium that normally lives in a fresh water environment is placed in an environment that is excessively salty, what will happen?

- a) The bacterium's cytoplasm will fill with water and cause the plasma membrane to rupture.
- b) Water will leave the bacterium's cytoplasm causing the plasma membrane to shrivel.
- c) Nothing will happen, salt concentrations outside of the cell do not affect the cytoplasm within the cell.

PRACTICE: There are two groups of bacteria which live in the Great Salt Lake: Halobacterium and Halococcus. The Great Salt Lake's average salinity is around 13%. What class of microbes do the Halobacterium and Halococcus species belong to?

- a) Non-halotolerant.
- b) Halotolerant.
- c) Halophile.
- d) Extreme Halophile.