CONCEPT: CYCLIC VS. NONCYCLIC PHOTOPHOSPHORYLATION

	ne cell requires production of ATP & Non-Cyclic Photophosphorylation:				ΔΤΡ & ΝΔΠΡΗ
<u>-</u>	lic Photophosphorylation	******	Overlie od		
С	The cell's requirement of	power (NADPH)	& ATP deteri	mines which one the ce	ll uses.
	1)Cyclic Photophosphorylation		2)	Photophosphory	lation.
	There are 2 types of photophosphorylati	ion pathways that are	e possible du	ring the <i>Light Reactions</i>	5:
Photop	hosphorylation: phosphorylation of ADP	o to ATP using	enei	rgy.	

PRACTICE: The main sources of energy in photophosphorylation are sunlight and ______.

- a) Proton motive force.
- b) Inorganic phosphate (PO₄³-).
- c) High-energy phosphate bond.
- d) CO₂ and H₂O.
- e) Chlorophylls.

PRACTICE: Non-cyclic photophosphorylation is used to synthesize:

- a) ADP and NADP+.
- c) ADP and ATP.
- e) ATP and NADPH.

b) ATP only.

d) NADPH only.

CONCEPT: CYCLIC VS. NONCYCLIC PHOTOPHOSPHORYLATION

Cyclic Photophosphorylation

- ●When the cell *only* requires _____ production, it uses *cyclic photophosphorylation* rather than non-cyclic.

 □ Cyclic Photophosphorylation: cyclic path of electrons *only* using photosystem ____ to make ATP (no NADPH).
 - □ High-energy electrons from *PSI* are *cycled back* to the prior _____ to continue generating a *proton motive force*.
 - □ Proton motive force is used to produce more _____.

PRACTICE: Photophosphorylation is:

- a) The phosphorylation of ADP to ATP using light energy of photosynthesis.
- b) The reduction of NADP+ to NADPH using light energy of photosynthesis.
- c) The phosphorylation of glucose to glusocse-6-phosphate during glycolysis.
- d) The oxidation of water during the light reactions of photosynthesis.

PRACTICE: What is the important difference between cyclic & non-cyclic photosynthesis?

- a) Cyclic photosynthesis generates NADPH but not ATP.
- b) Cyclic photosynthesis generates ATP but not NADPH.
- c) Cyclic photosynthesis generates ADP but not NADPH.
- d) Cyclic photosynthesis generates ATP but not NAD+.
- e) Cyclic photosynthesis generates NADP+ but not ATP.