CONCEPT: PROPERTIES OF WATER: THE UNIVERSAL SOLVENT

Water is described as the "Universal	" because it can dissolve SO MANY	·
\Box Solvent : the substance that does the $distance$	ssolving, usually found in	_ amounts (usually water).
□ Solute : the substance that gets dissolved by the <i>solvent</i> , usually found in		amounts.
□ Solution: the	of the solutes & solvent.	
□ Water molecules form a	shell around individual solute molecules	

EXAMPLE: Table Salt (NaCl) Dissolving in Water.

PRACTICE: A solution in which water is the solvent is called a(n) ______ solution.

a) Polar.

b) Aqueous.

c) Hydrophobic.

d) Complete.

PRACTICE: The substance in a mixture that is dissolved is called the:

- a) Solution.
- b) Solvent.
- c) Solute.
- d) Aqueous solution.

PRACTICE: What is the charge of the solute molecule in the image below based on the polarity of water?

a) Positively charged.

- b) Negatively charged.
- c) Uncharged.
- d) Non-polar and hydrophobic.

CONCEPT: PROPERTIES OF WATER: THE UNIVERSAL SOLVENT

<u>Homogenous vs. Heterogenous Solutions</u>

- _____genous solutions: uniformly mixed solutions where all parts are ______ distributed.
- _____genous solutions: mixed solutions where parts are _____ distributed.

EXAMPLE: Homogenous vs. Heterogeneous Solutions.

PRACTICE: The components of a heterogenous solution are ______ distributed throughout.

a) Equally.

b) Unequally.

c) Uniformly.

Hydrophilic vs. Hydrophobic

- •Hydro-_____ to it (water "loving").

 □ _____ & ____ molecules tend to be hydrophilic (ex: salts & ions).
- •Hydro-____: describes substances that do _____ dissolve in water (water "fearing").
 - _____polar molecules tend to be hydrophobic (ex. *fats*, *oils*, & *waxes*).

EXAMPLE: Salt vs. Oil in Water.

PRACTICE: Hydrophobic molecules:

- a) Are polar covalent molecules.
- c) Are nonpolar water "fearing" molecules.
- b) Easily dissolve in water.
- d) Are nonpolar water "loving" molecules.