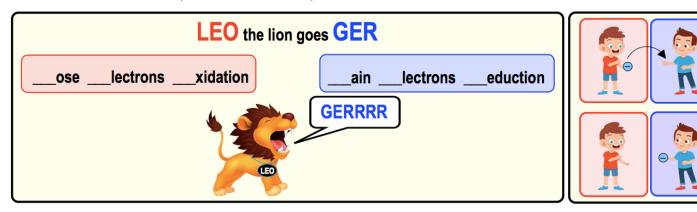
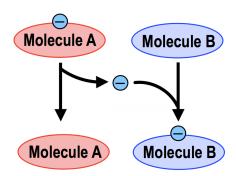
CONCEPT: REDOX REACTIONS


● Oxidation-Reduction (______) Reaction: transfers ______ (e-) between molecules.

□ Oxidation: the process of ______ one or more electrons.

□ Reduction: the process of ______ one or more electrons (overall charge is reduced).


□ Oxidation & reduction reactions always occur _____ (at the same time).

EXAMPLE: Redox Reaction (LEO the Lion goes GER).

EXAMPLE: Which of the following molecules is oxidized and which is reduced?

- a) Molecule A is oxidized; Molecule B is reduced.
- b) Molecule A is reduced; Molecule B is oxidized.
- c) Both Molecule A & Molecule B are reduced.
- d) Both Molecule A & Molecule B are oxidized.

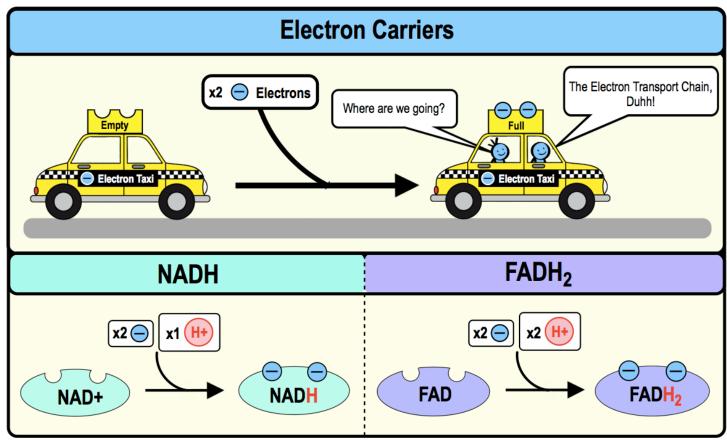
PRACTICE: Oxidation is the ______, and reduction is the _____.

- a) Gain of electrons; Loss of electrons.
- c) Loss of electrons; Gain of electrons.
- b) Gain of protons; Loss of protons.
- d) Gain of oxygen; Loss of oxygen.

PRACTICE: When glucose donates electrons to NAD+ creating NADH, the glucose molecule becomes:

- a) Hydrolyzed.
- b) Oxidized.
- c) Neutral.
- d) Reduced.

CONCEPT: REDOX REACTIONS


Electron Carriers: NADH & FADH₂

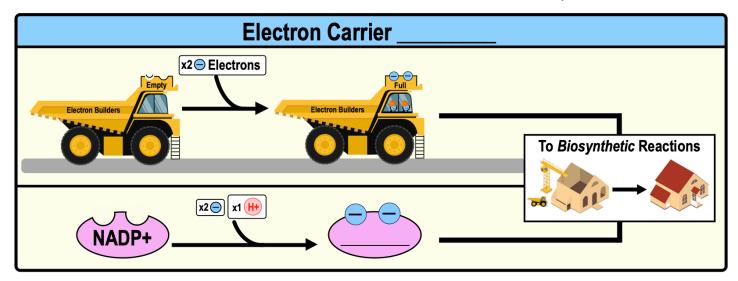
●Many biological processes (including Cellular Respiration) conduct redox reactions using electron				
□ Electron carriers such as	&	each carry/transport	electrons.	

□ NADH & FADH₂ can shuttle electrons to different locations within a cell like an electron "______" cab.

□ NAD+ & FAD are the _____ forms of NADH & FADH₂, respectively.

EXAMPLE: Formation of NADH and FADH₂.

- □ Helpful Memory Tool: think that NAD____ and FAD_____2 are just a little bit "____eavier."
- □ During Cellular Respiration, electrons carried by NADH & FADH₂ go to the Electron Transport Chain.


PRACTICE: An electron carrier before it harvests energy from glucose molecules in a series of gradual steps is:

- a) Pyruvate.
- b) AMP.
- c) ATP.
- d) NAD+.
- e) NADH.

CONCEPT: REDOX REACTIONS

Electron Carrier NADPH

- ●NADPH is an electron _____ similar to NADH and FADH₂ for reduction reactions.
- ●However, unlike NADH & FADH₂, NADPH is used in ______ reactions for biosynthesis.

PRACTICE: NADH is commonly used as an electron carrier during the *breaking down* of complex molecules like glucose in cellular respiration. NADPH is also a common electron carrier. However, NADPH is used to *build* complex molecules like glucose in a process called:

- a) Biogenesis.
- b) Biocatalysis.
- c) Biosynthesis.
- d) Metabolism.

PRACTICE: Which electron carrier is *not* matched with its correct function.

- a) NADH: Shuttles electrons to regions of the cell which need energy.
- b) FADH₂: Shuttles electrons to the electron transport chain during cellular respiration.
- c) NADPH: Shuttles electrons to photosynthesis where glucose molecules are being made.
- d) All of the above electron carriers are matched with their correct function.