Selecting an effective method to control microbial growth is challenging; each method has advantages & disadvantages.

1) Types of Microbes (Microbial Characteristics)

- •The _____ of microbe & its characteristics are important considerations in selecting a growth control method.
 - □ Some microbes are highly ______ to a particular treatment whereas others are sensitive.
 - □ The type of microbe can dictate whether a disinfection or sterilization procedure should be used.

EXAMPLE: Resistance Levels of Different Types of Microbes.

PRACTICE: Which of the following questions are important to answer before attempting to control a microbial population?

- a) What type of microbe am I trying to control?
- c) What is the size of the microbial population?
- b) What kind of environment is the microbe in?
- d) All are important questions to answer.

PRACTICE: Which microbe has the highest level of resistance to control methods that humans currently possess?

- a) Mycobacteria (bacteria that cause tuberculosis). c) Prions.
- b) Enveloped viruses (Covid-19 virus, HIV, etc.).
- d) Bacterial endospores.

2) Number of Microbes

•When a microbial population is treated with physical or chemical pro-	ocesses, they usually die at a rate.
☐ The LARGER the population of microbes, the	it takes to destroy the entire population.
□ Washing & scrubbing removes microbes/biofilms &	time to sterilize/disinfect an item.
●Microbial Death Curve: plot of the of a microbial pop	oulation over time due to physical/chemical treatment.
Decimal Reduction Time (Value): time required to kil	Il% of a microbial population under set conditions
☐ The GREATER the D-value, the resistant the	e microbial population is to the treatment method.
EVANDLE, Effect of the Number of Missels of the Time To IVIII	

EXAMPLE: Effect of the Number of Microbes on the Time-To-Kill.

PRACTICE: The decimal reduction time refers to the amount of time it takes to which of the following?

- a) Reduce a microbial population by 10%.
- b) Reduce a microbial population by 0.1%.
- c) Reduce a microbial population by 90%.
- d) Completely eliminate a microbial population.

PRACTICE: Which microbial control method is most effective for killing a population of Bacteria X?

- a) A microbial control method with a D-value of 1 hour.
- b) A microbial control method with a D-value of 10 minutes.
- c) A microbial control method with a D-value of 30 minutes.
- d) A microbial control method with a D-value of 2 hours.

3) Overall Risk of Infection

- •The risk of ______ that a particular item presents dictates the method of controlling microbial growth.
- •Medical instruments & tools are categorized into _____ groups based on their risk of infecting a patient:
 - -Critical Instruments: present a risk of infection; only low-level disinfection.
 - 2 -Critical Instruments: present a ______ risk of infection; require high-level disinfection.
 - Instruments: present a _____ risk of infection; must be _____.

4) Environmental Factors

- •Environmental factors such as ______ & ____ can influence effectiveness of growth control methods.
 - □ If temperature or pH ranges are not correct, then the growth control method may be _____.
 - □ Substances like grease, dirt & body fluids can *interfere* & should be *cleaned out* prior to disinfection/sterilization.

PRACTICE: Match the type of instrument with its correct level of microbial infection risk.

a) Critical Instruments: High risk.

c) Semi-Critical Instruments: Low risk.

b) Non-Critical Instruments: Medium risk.

d) All are matched correctly.

PRACTICE: What can affect the effectiveness of a microbial growth control method?

- a) The temperature of the environment the control method is being used in.
- b) The pH of the environment the control method is being used in.
- c) The presence of grease, dirt, or body fluids on the surface contaminated with microbes.
- d) The type of microbe you are trying to control.
- e) All of the above.

5) Composition of Item to Be Treated

•Some physical & chemical processes that control microbial growth are inappropriate for certain types of material.

□ Some physical methods, like heat & irradiation, can cause ______ to some types of plastics.

□ _____ chemical disinfectants can damage certain materials (like electrical equipment).

EXAMPLE: The Composition of the Item Must Be Compatible with a Microbial Growth Control Method.

PRACTICE: Why must the composition of the item being treated be compatible with the microbial growth control method?

- a) If the item and the control method are not compatible then the microbes will die faster.
- b) If the item and the control method are not compatible then the item can be damaged by the control method.
- c) If the item and the control method are not compatible then the control method will be ineffective.
- d) None of the above.