CONCEPT: MONOMERS & POLYMERS •Monomers: ______, individual building blocks that can be repetitively linked together to form polymers. □ **Polymers**: *long* chains of _____ monomers *linked together*. □ Monomers will _____ depending on the type of biomolecule polymer. □ Carbohydrates, proteins, & nucleic acids use consistent monomers to form polymers, but _____ do NOT. **EXAMPLE:** Monomers vs. Polymers. ## **Building & Breaking-Down Polymers** 1) **Dehydration** ______: forms covalent bonds to *link* individual monomers & ______ a polymer. 2) ______: cleaves covalent bonds to ______ down a polymer. **EXAMPLE:** Formation & Breakdown of Polymers. **PRACTICE:** Which of the following statements concerning dehydration reactions and hydrolysis is correct? - a) Dehydration reactions allow solutions to evaporate; hydrolysis reactions dissolve solutes. - b) Dehydration reactions and hydrolysis reactions assemble polymers from monomers. - Hydrolysis reactions create polymers from monomers; and dehydration reactions create monomers from polymers. - Dehydration reactions create polymers from monomers; hydrolysis reactions break down polymers. **PRACTICE:** _____ bonds are formed between monomers to form a polymer. - a) lonic bonds. - b) Covalent bonds. c) Hydrogen bonds. d) Hydrophobic bonds. e). Nuclear bonds.