CONCEPT: GLUCOSE'S IMPACT ON LAC OPERON

Glucose Levels, cAMP, & the lac Operon

●In most prokaryotes,	is the preferred energy source even in the presence of lactose.
□ This means that if glucose	e is available, then the lac operon should be turned ""
• Glucose levels are linked to cellular	levels of a molecule called cyclic AMP ().
□ When glucose is <i>low/abse</i>	ent & not available for metabolism, cellular levels of cAMP
□ <i>High</i> cellular <mark>cAMP</mark> levels _:	the rate of transcription of the lac operon.
□ <mark>cAMP</mark> levels do a	iffect repressor protein's activity & only increase transcription when glucose is absent.

EXAMPLE: Glucose Levels Control cAMP Levels in the Cell, Which Controls Rate of Lac Operon Transcription.

EXAMPLE: Complete the table below:

Environmental Levels		Cellular Levels			Expressed?
Glucose	Lactose	Glucose	сАМР	Lactose	lac Operon
HIGH	HIGH	HIGH	low		
HIGH	low			low	
low	HIGH	low			
low	low	low		low	

PRACTICE: How does extracellular glucose inhibit transcription of the lac operon?

- a) By strengthening the binding of the repressor to the operator.
- b) By weakening the binding of the repressor to the operator.
- c) By inhibiting RNA polymerase from opening the strands of DNA to initiate transcription.
- d) By reducing the levels of intracellular cAMP.

CONCEPT: GLUCOSE'S IMPACT ON LAC OPERON

Positive Control by cAMP & CRP

● Cyclic AMP Re	eceptor <u>P</u> rotein () is an	protein o	f the <i>lac</i> operon when bound	to <i>cAMP</i> .
•Low Glucose I	evels =	cellular <mark>c<i>AMP</i> l</mark> evel	s which binds to & act	ivates CRP.	
□ <mark>Active</mark>	e <i>CRP</i> binds to a re	egion of DNA upstream	n of the lac	& recruits RNA polym	erase.
	Glucose =	cAMP =	CRP =	Rate of Lac Operor	n Transcription.

EXAMPLE: cAMP & CRP Positively Control Expression of *lac* operon.

PRACTICE: When glucose is present:

- a) cAMP is high, CRP binds to the activator binding site, and transcription of the *lac* operon is turned off.
- b) cAMP is low, CRP binds to the site activator binding site, and transcription of the *lac* operon is turned on.
- c) cAMP is high, CRP does not bind to the activator binding site, and transcription of the *lac* operon is turned on.
- d) cAMP is low, CRP does not bind to the activator binding site, and transcription of the *lac* operon is turned off.