CONCEPT: INTRODUCTION TO CONTROLLING MICROBIAL GROWTH

- Controlling microbial growth is critical to human health & a wide variety of processes (ex. manufacturing products/foods).
 - □ Uncontrolled microbial _____ can lead to increased risk of disease & spoilage/reduced quality of products.
 - □ Processes used to control/limit microbes are either _____, _____ or both.
 - □ Selecting a process depends on many variables including the circumstances & level of control required.

EXAMPLE: Map of the Lesson on Processes Controlling Microbial Growth.

PRACTICE: Why is it important to human health and wellbeing that we control microbial growth?

- a) Uncontrolled microbial growth can lead to increased risks of disease and infection.
- b) Uncontrolled microbial growth can lead to spoilage of food products.
- c) Uncontrolled microbial growth can lead to contaminated experiments.
- d) All of the above.

PRACTICE: Physical methods used to control microbial growth include all of the following *except*?

- a) Refrigeration.
- b) Air filtration.
- c) Liquid chemical disinfectants.
- d) Steam (moist heat).

CONCEPT: INTRODUCTION TO CONTROLLING MICROBIAL GROWTH

Terminology of Microbial Growth Control

 Several terms are used in relation to controlling microbial grow 	Seven	eral terms	are used i	n relation	to co	ontrollina	microbial	arow
--	-------------------------	------------	------------	------------	-------	------------	-----------	------

Decontamina	ation: general term refer	ring to the	of the number of pathogens to a safe level.
Sanitization:	cleaning & reducing pat	hogens to meet accepted public	health standards, minimizing disease.
Disinfection:	elimination of	pathogens (disease-causing a	agents); some <i>viable</i> microbes may remain.
Sterilization:	elimination of	microbes (except prions) such	as microorganisms, viruses & endospores.
Preservation	process of	spoilage of perisha	ble products (items likely to go bad quickly).

Decontamination Reducing the number of pathogen to a safe level.								
Sanitization	Disinfection	Sterilization	Preservation					
Reducing pathogens to meet public health standards.	Elimination of pathogens.	Elimination of microbes (except prions).	spoilage of perishable products.					
Minimizes the spread of Hand Sanitizer Kills 99.9% of Germs Less toxic to humans. Sanitized Tables!	Disinfectant Kills 99.9% of Germs More toxic to humans.	Radiation A						

Hierarchy of Microbial Growth Control Terminology

CONCEPT: INTRODUCTION TO CONTROLLING MICROBIAL GROWTH

PRACTICE: What is the main difference between preservation and sterilization?

- a) Preservation does *not kill* microbes but delays microbial growth. Sterilization kills *all* microbes, except prions.
- b) Preservation preserves food by killing *all* microbes present in/on food. Sterilization kills *most* pathogenic microbes.
- Preservation reduces pathogens to meet health standards. Sterilization kills all microbes.
- d) Preservation kills *all* microbes except prions. Sterilization kills *all* microbes, including prions.

<u>Situations Warranting Different Levels of Microbial Growth Control</u>

- Methods used for microbial growth control ______ greatly depending on the situation & level of control.
- □ Control measures used on a regular basis at your home may not be adequate for a surgery room in a hospital.

EXAMPLE: Different Scenarios Require Different Levels of Microbial Growth Control.

PRACTICE: Which of the following concerning the varying levels of microbial control is *false*?

- We clean and sanitize our homes to *reduce* the number of microbial pathogens.
- Hospitals attempt to sterilize and kill all microbes in rooms and on tools to prevent infection.
- Pasteurization and irradiation are common microbial growth control methods used in food production.
- Laboratories sterilize media and tools to prevent contamination of their experiments.
- e) All of the above are true.