CONCEPT: EUKARYOTIC POST-TRANSLATIONAL REGULATION

●Eukaryotes regulate expression at the post				by controlling activity of the expressed protein.	
□ <i>R</i>	ecall: Post-translat	ional modifications (PTN	//s) are covalent r	modifications to proteins	_ translation
● <i>PTM</i> s can	activate/inactivate	a protein or ""	the protein for de	egradation by Proteases.	
		: enzymes that degrade	e proteins by brea	aking <i>polypeptide bonds</i> making single a	mino acids.

EXAMPLE: Protein activity can be controlled by post-translational modifications or degradation by proteases.

PRACTICE: Protein degradation is one strategy to control gene expression and is considered _____.

- a) Transcriptional control.
- b) Post-transcriptional control.
- c) Translation initiation control.
- d) Post-translational control.
- e) Chromatin remodeling.

PRACTICE: Post-translational modifications of proteins can affect which of the following?

- a) Protein function.
- b) Protein location within the cell.
- c) Protein activation or inactivation.
- d) Protein degradation.
- e) All of the above.

CONCEPT: EUKARYOTIC POST-TRANSLATIONAL REGULATION

Protein Ubiquitination

- ●Eukaryotes need a way to _____ which proteins in a cell are no longer needed & can removed.
- •Cells utilize PTMs to "tag" specific proteins in a cell to be by cellular *proteases*.
 - small peptide used by Eukaryotic cells to mark proteins for degradation.
 - □ **Ubiquitin** _____: cellular enzyme that adds the *ubiquitin* peptide to the target protein.

EXAMPLE: Ubiquitin ligase adds a ubiquitin peptide to a mis-folded or non-functioning protein.

PRACTICE: A hormone signal reaches a cell and causes the cell to produce a large quantity of Protein X. After some time, the hormone signal disappears and the cell no longer needs a large quantity of Protein X. How will the cell remove the excess protein?

- a) The repressor protein for the Protein X gene will stop the transcription of the gene.
- b) The excess Protein X will be tagged with ubiquitin proteins and degraded over time.
- c) The Protein X mRNA will be bound by a microRNA blocking its translation.
- d) Over time the excess Protein X will diffuse out of the cell.