CONCEPT: PROTEINS

- Proteins: a class of biomolecule *polymers* made of ______ *monomers*.
 - □ ______ Bonds: covalent bonds linking adjacent amino acids together.
 - □ Protein polymers have *directionality* (_____-terminal & ____-terminal ends).

EXAMPLE: Formation proteins from amino acid monomers.

Amino Acids

- •Amino acids: the _____ of proteins.
 - □ Each amino acid monomer contains *common components* & a *unique* _____-*group*.
 - □ Living organisms primarily use _____ different amino acids, each with a _____ *R-group*.

EXAMPLE: Amino Acid Structure.

PRACTICE: The primary building blocks (monomers) of proteins are:

- a) Glucose molecules.
- b) Lipids.
- c) Nucleotides.
- d) Amino acids.
- e) None of these.

PRACTICE: Which two functional groups are always found in amino acids?

a) Carbonyl and amino groups.

b) Carboxyl and amino groups.

c) Amino and sulfhydryl groups.

d) Hydroxyl and carboxyl groups.

CONCEPT: PROTEINS

5 Protein-Related Terms

•_____ terms refer to amino acid chains that _____ in length:

Term	Term Length of Amino Acid Chain		
1 Amino acid	A single protein unit or		
2peptide	2 to ~ covalently linked amino acids.		
3 Peptide	than 50 covalently linked amino acids.		
4peptide	than 50 covalently linked amino acids.		
5 Protein	One or multiple polypeptide chains in their folded/ forms.		

PRACTICE: What term is used for an amino acid chain that has greater than 50 covalently linked amino acids?

- a) Protein.
- b) Peptide.
- c) Amino acid.
- d) Polypeptide.

Protein Structure

- Dastains	h	، بما میں میں ا	-f -ll		حا ما	
Proteins	nave a	nierarchy	oi structure	organized in	ilo le	vels:

1) **Primary (_____o):** types, quantity & _____ of amino acids. Determines all other levels of structure.

2) **Secondary** (______o): formation of either _____-helices or _____-sheets in the protein backbone.

3) **Tertiary (_____°):** overall 3D-shape of a *polypeptide* chain.

4) Quaternary (______°): ______ polypeptide chains associate to form a single, functional protein.

EXAMPLE: The four levels of protein structure:

PRACTICE: The specific amino acid sequence in a protein is its:

- a) Primary structure.
- b) Secondary structure.
- c) Tertiary structure.
- d) Quaternary structure.

CONCEPT: PROTEINS

PRACTICE: Which of the following is true of protein structure?

- a) Peptide bonds are formed by hydrolysis.
- b) Peptide bonds join the amine group on one amino acid with the R group of another amino acid.
- c) Secondary protein structures are caused by hydrogen bonding between atoms of the peptide backbone.
- d) Tertiary protein structure emerges when there is more than one polypeptide in a protein.

Denatured Proteins & Chaperones

●A protein's structure & shape is critical for its proper					
•		_ Protein: a	-functional protein that has altered its shape.		
	□ Results from _		_ in the environment (ex. changes in pH, temperature, or salt concentration)		
		Protei	ns: proteins that help other proteins can re-form their shape (or "re-nature").		

EXAMPLE: Protein denaturation and renaturing.

PRACTICE: What is the role of a chaperone protein?

- a) Assist in RNA and DNA folding.
- b) Assist in membrane transport.
- c) Assist in protein denaturation.
- d) Assist in dehydration synthesis reactions.
- e) Assist in protein folding or re-naturing.