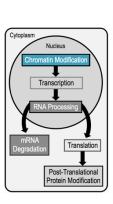
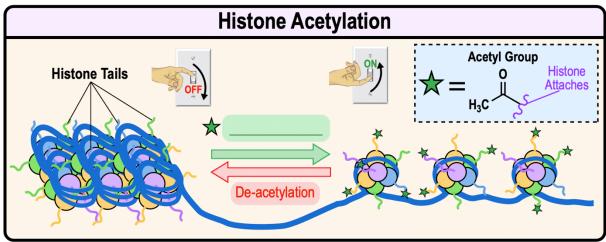

CONCEPT: EUKARYOTIC CHROMATIN MODIFICATIONS

- ●Eukaryotes can regulate gene expression by modifying the structure of their _____.
- Recall: Chromatin are _____ packed/coiled nucleosomes (DNA wrapped around units of ____ histone proteins).
 - □ Modifications to ______ proteins or _____ sequence are made to control transcription.
 - chromatin: condensed region of genome with low transcriptional activity.
 - chromatin: *lightly packed* region of genome with *high* transcriptional activity & histone/DNA modifications.

EXAMPLE: Heterochromatin vs. Euchromatin.





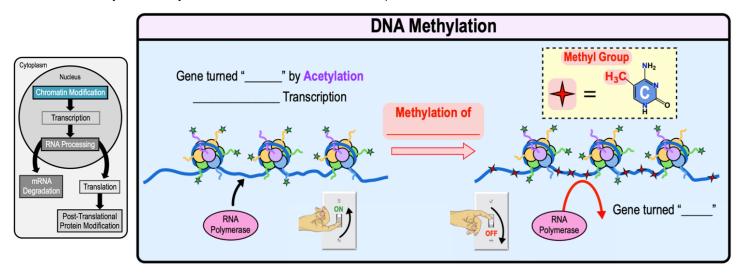
Histone Acetylation

- *Histone proteins* contain long polypeptide "______" that can be chemically modified by cellular enzymes.
 - □ The most common modification is ______: addition of an *acetyl group*.
 - □ Histone acetylation _____ the chromatin structure, making the DNA accessible to RNA polymerase.

EXAMPLE: Histone Acetylation Loosens Chromatin Structure, Forming Euchromatin.

• Removal of acetyl groups (de-acetylation) results in _____ packing of the chromatin structure (heterochromatin).

CONCEPT: EUKARYOTIC CHROMATIN MODIFICATIONS


PRACTICE: Histone acetylation is associated with:

- a) Activate transcription in that region, RNA Polymerase can easily interact with DNA.
- b) Repressed transcription in that region, RNA Polymerase cannot easily interact with DNA.
- c) Tightly-packed nucleosomes.
- d) No change in chromatin structure or transcription rates.

DNA Methylation

- •In addition to histone modifications, the _____ sequence can also be chemically modified to regulate transcription.
 - □ Most common DNA modification is ______: addition of a *methyl group* to Cytosine (residues.
- DNA Methylation ______ transcription of by blocking RNA polymerase access to the promoter.

EXAMPLE: Methylation of Cytosine Nucleotides Blocks Transcription.

PRACTICE: Transcriptional repression by methylation of DNA involves the methylation of which nucleotide?

- a) Adenine.
- b) Uracil.
- c) Cytosine.
- d) Thymine.
- e) Guanine.

PRACTICE: Which of the following causes transcription to be increased for a specific gene?

- a) Histones in that region are deacetylated.
- b) DNA is methylated in the regulatory region of the gene.
- c) Histones in that region are acetylated.
- d) The chromatin structure is tightly packed.
- e) B and D.