CONCEPT: TOTAL REVENUE ALONG A LINEAR DEMAND CURVE

- Slope is constant along a linear demand curve, elasticity is not constant.
 - \square Slope \rightarrow Ratio of changes in two variables
 - $\hfill\Box$ Elasticity \Rightarrow Ratio of percentage changes in two variables

Price Change	Unit Change	Percentage Change
\$1 → \$2		
\$2 → \$3		

Price	Quantity Demanded	Total Revenue
8	0	
7	2	
6	4	
5	6	
4	8	
3	10	
2	12	
1	14	
0	16	

- □ Demand is elastic to the _____ of the middle of the line.
- □ Demand is unit-elastic _____ the middle of the line.
- □ Demand is inelastic to the ______ of the middle of the line.

PRACTICE: Use this graph to answer the following questions.

What is the elasticity of demand when the price of the good changes from \$3 to \$5?

- a) 0.25
- b) 0.50
- c) 1.00
- d) 2.00

At what price is the elasticity of demand for the product equal to one?

- a) \$2
- b) \$3
- c) \$4
- d) \$5

At what price is revenue maximized?

- a) \$2
- b) \$3
- c) \$4
- d) \$5