Protein Digestion

- ◆ Most protein digestion occurs in the _____ & ____ intestine.
 - Stomach: ______ denatures proteins & activates the protein-digesting enzyme/protease called "pepsin."
 - Small Intestine: pancreatic & intestinal proteases continue digesting peptides into single _____ acids.

	Step#	Location	Enzyme/Agent	Product
	1	Mouth	N/A	Mechanically digested
				proteins (chewing)
	2	Stomach	Stomach HCl (acidic pH), Pepsinogen →	Proteins + Peptide fragments
	3	Small	Pancreatic & Intestinal	Dipeptides + Tripeptides +
		Intestine	Proteases	Some Amino Acids
		Small Intestine	Dipeptidases &	Single amino acids
		Enterocytes	Tripeptidases	

EXAMPLE

Which of the following statements regarding protein digestion is true?

- a) Proteases break polypeptides down into shorter peptide chains in the mouth.
- b) Most protein digestion occurs in the mouth, where it is mechanically denatured & broken down by acid.
- c) Chemical digestion of proteins occurs in the acidic environment of the stomach, which denatures proteins.
- d) Large proteins and long polypeptides can be easily absorbed in the small intestine.

PRACTICE

Which of the following statements correctly describes the role of pepsin in protein digestion?

- a) Pepsin is an enzyme that breaks proteins down into short peptides in the stomach.
- b) Pepsin begins breaking down proteins in the mouth, as it is released from salivary glands.
- c) Pepsin is a protein itself and therefore is denatured in the stomach due to the acidic environment.
- d) Pepsin's primary function is to denature proteins (causing them to lose their quaternary, tertiary, & secondary structure) but does not cleave (split) them.

The 3 Primary Fates of Absorbed Amino Acids

- ◆ Amino acids absorbed in the small intestine enter the *blood*, becoming part of the body's *amino acid* ______.
 - ► Amino Acid Pool: all the body's amino acids available for _____ (most circulate in blood).
- ◆ Amino acids in the blood travel to the _____ & have 3 primary fates:
 - 1) Used to build new proteins.
 - 2) Used to build non-protein, nitrogen-containing products.
 - 3) Deaminated (removes N) then used as a "last resort" _____ source or converted to glucose or fat.

What is Protein Turnover?

- ◆ Our bodies rely on our *diet* & *protein* ______ to replenish the amino acid pool & maintain critical functions.
- ◆ (Protein Turnover:) the ongoing process of breaking down & rebuilding proteins in the body.
 - Allows old, damaged, non-functional proteins to be degraded & _____ with newly built proteins.
 - Also allows cells to ______ to current conditions, producing the proteins required in any given moment.
- ◆ ~250g of protein is "turned over" per day, which _____ how much dietary protein intake we need!

Proteins (e.g. Enzymes)

Non-protein, N-containing Products

Energy, Glucose, Fat

EXAMPLE

Fill in all the blanks throughout the image below to review protein digestion and absorption.

PRACTICE

Which of the following is NOT a potential fate of amino acids from dietary proteins?

- a) Used to build non-protein, nitrogen-containing products.
- b) Deaminated and converted to glucose or fat for energy.
- c) Stored in the liver for later use.
- d) All of the above are potential fates of absorbed dietary proteins.

PRACTICE

Why is it so important to maintain an adequate number of amino acids in your body's amino acid pool?

- a) Your body loses ~250g of protein per day so it's important to intake approximately 250g/day to replace it.
- b) Your body is constantly degrading & synthesizing proteins (protein turnover), so it needs an adequate number of amino acids available to use for new proteins.
- c) Your body always needs to have enough amino acids available to be deaminated & used for energy.
- d) All of the above.

PRACTICE

Based on the diagram below, which of the following statements is correct?

- a) Once amino acids are absorbed, they are first built up into proteins, then relocated throughout the body.
- b) Amino acids are absorbed by the small intestine, then deaminated before entering the amino acid pool.
- c) All protein that is deaminated will be excreted in urine.
- d) While most of the amino acids absorbed by the body are used to make protein, some are used to make non-protein products such as glucose, fat, & some nitrogen-containing molecules.

PRACTICE

Which of the following answer options describes an instance where protein turnover is a useful process?

- a) Storage of amino acids in the amino acid pool, so they can be quickly used for energy at any time.
- b) The breakdown of DNA to form new proteins.
- c) The breakdown of insulin when blood glucose levels drop & the use of its amino acids to make new proteins.
- d) All of the above.