TOPIC: OTHER TRACE MINERALS

Zinc (Zn)

♦ Main bodily functions:

• Enzymatic: cofactor for over 300 enzymes.

• Structural: stabilizes _____.

Regulatory: helps regulate _____ expression → fetal development.

• Immunity: may reduce the duration of a cold*.

Food Sources	Deficiency (Rare)	Excess/Toxicity (Rare)	
Fish, meat, & whole grains (or	Rare in countries.	From	
enriched/ leavened bread).	◆ Growth delays.	◆ Gastrointestinal upset.	
	◆ Delayed sexual maturation.	◆ Headaches.	
	◆ Reduced appetite.	◆ Weakened immune function.	
	◆ Increases susceptibility to infection.	◆ Interfere with absorption.	
Things That Limit Absorption			
Non-heme iron, fiber, phytates.			
Main dietary concern: none			

RDA (19-50): 8-11 mg

PRACTICE				
Which of the following is	a good source of zinc?			
a) Unleavened bread.	b) Ovsters.	c) Citrus fruits.	d) Cantaloupe.	

TOPIC: OTHER TRACE MINERALS

Selenium (Se)

◆ Main bodily functions:

- Cofactor for many enzymes.
- ▶ _____ hormone production.
- Antioxidant & immune function correlation w/ lower risk of certain ______.

Food Sources	Deficiency (Rare)	Excess/Toxicity (Rare)	
Almost all food groups	Unlikely if eating food from different	: over supplementation.	
→ dependent on the	A halabited the maid to matica	Brittle nails & hair loss.	
amount in the	◆ Inhibited thyroid function.	◆ Skin rashes	
	◆ Keshan disease (heart disorder).	Nausea & vomiting.Liver damage.	
Main dietary concern: none.			

RDA (19+):

55 µg

PRACTICE

Which of the following statements best describes why selenium levels vary in different foods?

- a) Virtually all plant foods are high in selenium, while animal products are not.
- b) Areas with greater rainfall will have crops with less selenium.
- c) Some geographic areas are naturally low in selenium, while others are high in selenium.
- d) Fertilizers often contain selenium, so fertilized crops will be higher in selenium.

TOPIC: OTHER TRACE MINERALS

Manganese (Mn), Chromium (Cr), & Molybdenum (Mo)

Mineral	Function	Foods	Deficiency/ Toxicity
Manganese	Enzyme cofactor in metabolism.	Mollusks, nuts, & whole grains.	D: rare
1.8 – 2.3 mg			T: toxic at large doses (> 11 mg / day)
Chromium 25 – 35 μg	Enhances function.	diet → Chromium in food not well studied.	D: impaired glucose uptake. T: not recorded.
Molybdenum 45 μg	Enzyme cofactor; important in metabolism of amino acids containing	Milk & dairy products, beans, whole grains, & nuts.	D: rare T: low risk in humans

PRACTICE				
Which trace mineral e	enhances insulin function?			
a) Selenium.	b) Chromium.	c) Molybdenum.	d) Manganese.	