CONCEPT: STILLE REACTION

- In the Stille reaction, an organostannane compound reacts with a carbon halide in order to form a new C—C bond.
 - □ The reaction creates conjugated compounds composed of alkenes, _____ or ____ compounds.

١	Cross-Coupling Reaction			
	R ₁ X	+ R ₂ —C _M	$R_1 \longrightarrow R_2 \longrightarrow R_2$	+ CX
	Carbon Halide	Coupling Agent	Coupling Product	Byproduct

- □ The R₁ group of the carbon halide is represented by a(n) *vinyl*, *aryl* + _____ group.
- \Box The R₂ group of the organostannane is represented by a(n) *vinyl*, *aryl* + _____ group.
- \Box The **C** = Sn(R)₃ with the R group of the organostannane is represented by a(n) _____ group.
- □ The **X** group of the carbon halide is represented by a Cl, Br, I or OTf group.
- When creating conjugated dienes, the reaction is observed to be ______ with retention of configurations.

PRACTICE: Determine the product from the following Stille Reaction.

Coupling Mechanism

1) **Oxidative Addition**: Involves the addition of the carbon halide to the transition metal complex.

$$R_1-X'$$
 $\xrightarrow{PdL_2}$

2) **Transmetallation**: The R_2 group transfers from the organostannane to the Pd metal complex.

$$R_1$$
- P d- L + R_2 - S n- R \longrightarrow R

3) **Reductive Elimination**: This step forms the coupling product.

CONCEPT: STILLE REACTION

PRACTICE: Determine the product from the following Stille Reaction.

$$Bu_3Sn$$
 + Br SO_3H $Pd(OAc)_2$ \rightarrow

PRACTICE: Determine the product from the following Stille Reaction.