CONCEPT: STILLE REACTION - In the Stille reaction, an organostannane compound reacts with a carbon halide in order to form a new C—C bond. - □ The reaction creates conjugated compounds composed of alkenes, _____ or ____ compounds. | ١ | Cross-Coupling Reaction | | | | |---|-------------------------|------------------------|---|-----------| | | R ₁ X | + R ₂ —C _M | $R_1 \longrightarrow R_2 \longrightarrow R_2$ | + CX | | | Carbon Halide | Coupling Agent | Coupling Product | Byproduct | - □ The R₁ group of the carbon halide is represented by a(n) *vinyl*, *aryl* + _____ group. - \Box The R₂ group of the organostannane is represented by a(n) *vinyl*, *aryl* + _____ group. - \Box The **C** = Sn(R)₃ with the R group of the organostannane is represented by a(n) _____ group. - □ The **X** group of the carbon halide is represented by a Cl, Br, I or OTf group. - When creating conjugated dienes, the reaction is observed to be ______ with retention of configurations. **PRACTICE:** Determine the product from the following Stille Reaction. ## **Coupling Mechanism** 1) **Oxidative Addition**: Involves the addition of the carbon halide to the transition metal complex. $$R_1-X'$$ $\xrightarrow{PdL_2}$ 2) **Transmetallation**: The R_2 group transfers from the organostannane to the Pd metal complex. $$R_1$$ - P d- L + R_2 - S n- R \longrightarrow R 3) **Reductive Elimination**: This step forms the coupling product. ## **CONCEPT: STILLE REACTION** **PRACTICE:** Determine the product from the following Stille Reaction. $$Bu_3Sn$$ + Br SO_3H $Pd(OAc)_2$ \rightarrow **PRACTICE:** Determine the product from the following Stille Reaction.