CONCEPT: RADICAL SELECTIVITY – QUALITATIVE

□ Selectivity is defined as the ability to only halogenate the carbons with most stable radical intermediates.

Fluorination:

- Overall $\Delta H^{\circ} = -432$
- No useful radical fluorination reactions.

Chlorination:

- Overall ΔH° = -101
- The only useful radical chlorinations are reactions with a single type of - H

Bromination:

- Overall ΔH° = -26
- The only useful method for selectively halogenating alkanes

<u>lodination:</u>

- Overall ΔH° = +53
- Not a spontaneous, don't even try it.

Chiral Products are ALWAYS racemized

EXAMPLE: Draw the product of the following radical chlorinations. Would the following radical chlorinations be synthetically useful? (Yielding only one product).

EXAMPLE: Predict the following monobrominated products of the following radical brominations:

CONCEPT: RADICAL SELECTIVITY -- QUANTITATIVE

- □ Selectivity is defined as the ability to only halogenate the carbons with most stable radical intermediates.
 - The Hammond Postulate explains why halogen radicals have differing selectivities.

Radical Chlorination

Reaction Coordinate

Radical Bromination

Reaction Coordinate