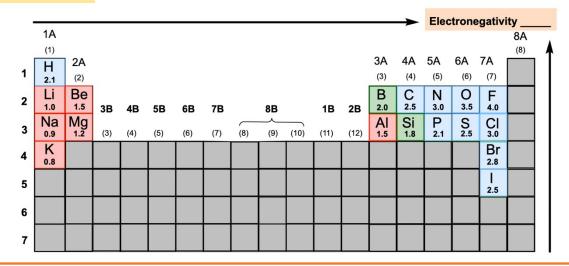

THE ELECTRON CONFIGURATION


- Ground State Electron Configuration: Distributions of electrons (1s, 2s, 2p..) within orbitals using the Auf Bau Principle.
 - □ **Auf Bau Principle:** Starting from 1s, electrons fill _____ energy orbitals before moving to _____ energy orbitals.
- Condensed Electron Configuration: we start at the last noble gas before the desired element.

EXAMPLE: Write the ground state and condensed electron configurations for the following element: Phosphorus (Z = 15)

ELECTRONEGATIVITY

- Electronegativity (EN): Measurement of an element's ability to attract electrons to itself.
 - □ Periodic Trend: Electronegativity _____ moving from left to right across a period and going up a group.

EXAMPLE: Which of the following represents the most electronegative Group 7A element?

a) Br

b) S

c) I

d) Cl

e) O

OCTET RULE

 The tendency of most Main Group Elements in achie 	eving octet electr	ons by way of chemical bo	onding.
□ Valence Electrons: Electrons an element p	ossesses based on		
□ Shared Electrons: Electrons an element	through a	chemical bond.	
Electrons =	Electrons +	Electrons	

EXAMPLE: Which of the following statements is true in terms of the following compound:

- a) Oxygen possesses 6 octet electrons: 6 valence and 2 shared electrons.
- b) Oxygen possesses 8 octet electrons: 6 valence and 2 shared electrons.
- c) Oxygen possesses 8 octet electrons: 8 valence and 0 shared electrons.
- d) Oxygen possesses 32 octet electrons: 6 valence and 2 shared electrons.

FORMAL CHARGE

- Used to check to see if you drew your Lewis Dot Structure correctly.
 - □ The only allowable formal charges for an element can be either <u>-1</u>, <u>0</u>, <u>+1</u>.
 - □ If you add up all the formula charges in your compound that will equal the overall charge of the compound.

Formal Charge Formula Formal Charge = _____ Electrons — (____ + ___ Electrons) Use Charge = _____ of element Under Double Dou

EXAMPLE: Determine the formal charges of each element with the thiocyanate ion. of the nitrogen atom found within the ammonia molecule, NH₃.

DRAWING LEWIS DOT STRUCTURES

• Many possible Lewis Dot Structures exist, but there are rules to draw the best structure.

STEP 1: Determine the total number of valence electrons of the structure.

Recall, Valence Electrons = ______ of the element.

STEP 2: Place the _____ electronegative element in the center and connect all elements with single bonds.

Exception: ____ never goes in the center.

Halogens: Only make _____ bonds as a surrounding element.

STEP 3: Add electrons to all the _____ elements until they have 8 electrons (Octet Rule).

Exception: Hydrogen only wants _____ electrons around it.

STEP 4: Place any remaining electrons on the central atom.

STEP 5: If any elements don't have 8 octet electrons, add _____ and _____ bonds between them.

STEP 6: The Formal Charge can be used to determine if a Lewis Dot Structure is drawn correctly.

RESONANCE STRUCTURES

- A set of two or more valid Lewis Dot Structures for polyatomic species possessing at least _____ pi bond(s).
 - □ In a Resonance Structure we have the movement of only _____ from either a pi bond or lone pair.

- □ **Double Sided Arrows:** used to show that resonance structures are _____ with each other.
- □ The real structure is represented by the _____ of the resonance structures called the *resonance hybrid*.
- □ **Resonance Hybrid:** A composite of all major resonance structures.
 - To draw the resonance hybrid we place a _____ anywhere a pi bond has been.

EXAMPLE: Determine the remaining resonance structures possible for the nitrate ion, NO₃-.

HYBRIDIZATION

- The hybridization of a central element can be connected to its number of electron groups.
 - □ **Electron Groups** = _____ pairs + ____ groups (surrounding elements).

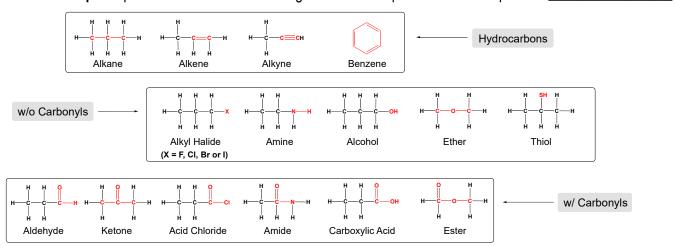
Hybridization								
Electron Groups	Electron Geometry	Hybridization	Add It Up	Hybridized Orbitals		Unhybridized Orbitals		
2	Linear		+=		P _x	p _y	P _z	
3	Trigonal Planar		+=		P _x	p _y	P _z	
4	Tetrahedral		+=		p _x	P _y	P _z	

EXAMPLE: Draw and determine the hybridization and number of unhybridized orbitals for the following covalent compound.

HCN Hybridization:

Unhybridized Orbitals:

MOLECULAR POLARITY


- Molecular Polarity: Polarity that arises for a(n) _____ molecule.
 - □ **Nonpolar Molecule:** Any hydrocarbon and any non-hydrocarbon with a *perfect shape*.
 - Perfect Shape I: central element has _____ surrounding elements and has ____ lone pairs.
 - □ **Polar Molecule:** Any Lewis Dot Structure that doesn't have a perfect shape.

Molecular Polarity						
Electron Groups	0 Lone Pair	1 Lone Pair	2 Lone Pairs	3 Lone Pairs		
2						
3		•				
4		0				

EXAMPLE: Determine if nitrogen trifluoride, NF₃, is polar or nonpolar.

FUNCTIONAL GROUPS

• Functional Group: the part of a molecule that is recognizable and responsible for a compound's ___

