• The citric acid cycle is a sequence of ____ biochemical reactions.

Phase A - Citrate Formation

• Phase A consists of the _____ reaction of the pathway.

1 Citrate Formation: acetyl group from acetyl CoA combines with ___ of oxaloacetate to give second metabolite, citrate.

EXAMPLE: How many carbon atoms are added to oxaloacetate to produce citrate?

- a) One
- b) Two
- c) Three
- d) Four

Phase B - Succinyl CoA Formation

- Phase B consists of the pathway's reactions ____, ____, and ____.
 - □ Produces ___ moles each of NADH and CO₂.

2 Isomerization: the 3° –OH in citrate isomerizes to a 2° –OH for _____ in the following step.

3 Alcohol Oxidation & Decarboxylation (1st): _____ with NAD+.

4 Oxidation & Decarboxylation (2nd): _____ Oxidation + Decarboxylation.

□ 1 NAD+ is reduced to 1 □ 1 C atom is lost as

EXAMPLE: For each of the following reactions described below, identify a corresponding step of the citric acid cycle.

- a) _____ Oxidation of α -ketoglutarate produces succinyl CoA.
- o) ____ Oxaloacetate is converted to citrate.
- c) _____ An oxidation reaction is catalyzed by isocitrate dehydrogenase.
- d) ____ Aconitase catalyzes the isomerization of citrate to isocitrate.

PRACTICE: Which step oxidizes α -ketoglutarate of the Citric Acid Cycle?

- a) 3
- b) 1
- c) 4
- d) 5

PRACTICE: Which two steps of the citric acid cycle produce CO₂?

- a) 1 and 3
- b) 3 and 4
- c) 2 and 4
- d) 2 and 3

• Phase C consists of the pathway's reactions ____ to ___.

5 Hydrolysis: C1 _____ reaction of succinyl CoA followed by transfer of phosphate group to GDP.

- **6 Dehydrogenation:** C2-C3 dehydrogenation with FAD converts succinate to fumarate.
 - □ 1 FAD is reduced to 1 _____.

• FAD converts _____ bonds to _____ bonds.

EXAMPLE: Which one of the following statements is incorrect about the citric acid cycle?

- a) Reaction 5 of the cycle converts succinyl CoA to succinate.
- b) Oxidation of succinate in reaction 6 produces fumarate.
- c) Phase C of the citric acid cycle does not contain any oxidation reactions.
- d) Hydrolysis of succinyl CoA to succinate create a high energy molecule.
- **7 Hydration:** C2-C3 conjugate addition of _____ converts fumarate to malate.

8 Oxidation: C2 oxidation with NAD+ to reform oxaloacetate.

□ 1 NAD+ is reduced to 1 _____.

EXAMPLE: For each of the following reactions described below, identify a corresponding step of the citric acid cycle.

- ____ The oxidation of malate to oxaloacetate.
- Succinate loses two H atoms to yield fumarate.
- Succinyl CoA undergoes hydrolysis to produce succinate.
- Malate is produced from hydration of fumarate.

PRACTICE: How many final high-energy molecules are produced in phase C of the citric acid cycle?

- a) 2
- b) 4
- c) 1
- d) 3

Remembering The Citric Acid Cycle Mechanisms: Reactions 1-8

MEMORY TOOL: NevA Ignore OrDinary Habits. Daily Habits Outperform.

EXAMPLE: Which of the following reaction steps could be classified as an electrophilic addition reaction?

- a) 5
- b) 2
- c) 7
- d) 6

Citric Acid Cycle Summary

• The citric acid cycle degrades acetyl groups to produce ____ and high-energy molecules.

MEMORY TOOL 1: Krebs cycle is A Big Crab.

| ____ oxidation reactions each in phases | ____ and | ___ | ___ Hawk in a circus ring.

| ___ oxidation reactions yield | ____ and/or | ____ | __ Hydrolysis reaction yields | ____ |

	Krebs Cycle (Citric Acid)
Start Molecule	2 Acetyl-CoA
АТР	
FADH ₂	
NADH	
End Molecule	Oxaloacetate

MEMORY TOOL 3:	u	_er trees in a forest, there lived 5 _				5r	its and 6	lies
u_	u	er_	_'s in a		, there lived 5	n	ts and 6 $_{ m -}$	_lies.

EXAMPLE: How many reactions in the citric acid cycle produce high-energy molecules?					
a) 4					
b) 5					
c) 3					
d) 6					

PRACTICE: Which reaction of the citric acid cycle produces NADH from the choices provided?

a) Reaction 3

b) Reaction 5

c) Reaction 2

d) Reaction 6

e) Reaction 1

f) None of these