• The citric acid cycle is a sequence of ____ biochemical reactions. ## Phase A - Citrate Formation • Phase A consists of the _____ reaction of the pathway. 1 Citrate Formation: acetyl group from acetyl CoA combines with ___ of oxaloacetate to give second metabolite, citrate. **EXAMPLE:** How many carbon atoms are added to oxaloacetate to produce citrate? - a) One - b) Two - c) Three - d) Four # Phase B - Succinyl CoA Formation - Phase B consists of the pathway's reactions ____, ____, and ____. - □ Produces ___ moles each of NADH and CO₂. 2 Isomerization: the 3° –OH in citrate isomerizes to a 2° –OH for _____ in the following step. 3 Alcohol Oxidation & Decarboxylation (1st): _____ with NAD+. 4 Oxidation & Decarboxylation (2nd): _____ Oxidation + Decarboxylation. □ 1 NAD+ is reduced to 1 □ 1 C atom is lost as **EXAMPLE:** For each of the following reactions described below, identify a corresponding step of the citric acid cycle. - a) _____ Oxidation of α -ketoglutarate produces succinyl CoA. - o) ____ Oxaloacetate is converted to citrate. - c) _____ An oxidation reaction is catalyzed by isocitrate dehydrogenase. - d) ____ Aconitase catalyzes the isomerization of citrate to isocitrate. **PRACTICE:** Which step oxidizes α -ketoglutarate of the Citric Acid Cycle? - a) 3 - b) 1 - c) 4 - d) 5 PRACTICE: Which two steps of the citric acid cycle produce CO₂? - a) 1 and 3 - b) 3 and 4 - c) 2 and 4 - d) 2 and 3 # • Phase C consists of the pathway's reactions ____ to ___. 5 Hydrolysis: C1 _____ reaction of succinyl CoA followed by transfer of phosphate group to GDP. - **6 Dehydrogenation:** C2-C3 dehydrogenation with FAD converts succinate to fumarate. - □ 1 FAD is reduced to 1 _____. • FAD converts _____ bonds to _____ bonds. **EXAMPLE:** Which one of the following statements is incorrect about the citric acid cycle? - a) Reaction 5 of the cycle converts succinyl CoA to succinate. - b) Oxidation of succinate in reaction 6 produces fumarate. - c) Phase C of the citric acid cycle does not contain any oxidation reactions. - d) Hydrolysis of succinyl CoA to succinate create a high energy molecule. - **7 Hydration:** C2-C3 conjugate addition of _____ converts fumarate to malate. **8** Oxidation: C2 oxidation with NAD+ to reform oxaloacetate. □ 1 NAD+ is reduced to 1 _____. **EXAMPLE:** For each of the following reactions described below, identify a corresponding step of the citric acid cycle. - ____ The oxidation of malate to oxaloacetate. - Succinate loses two H atoms to yield fumarate. - Succinyl CoA undergoes hydrolysis to produce succinate. - Malate is produced from hydration of fumarate. PRACTICE: How many final high-energy molecules are produced in phase C of the citric acid cycle? - a) 2 - b) 4 - c) 1 - d) 3 #### Remembering The Citric Acid Cycle Mechanisms: Reactions 1-8 **MEMORY TOOL:** NevA Ignore OrDinary Habits. Daily Habits Outperform. **EXAMPLE:** Which of the following reaction steps could be classified as an electrophilic addition reaction? - a) 5 - b) 2 - c) 7 - d) 6 ### **Citric Acid Cycle Summary** • The citric acid cycle degrades acetyl groups to produce ____ and high-energy molecules. MEMORY TOOL 1: Krebs cycle is A Big Crab. | ____ oxidation reactions each in phases | ____ and | ___ | ___ Hawk in a circus ring. | ___ oxidation reactions yield | ____ and/or | ____ | __ Hydrolysis reaction yields | ____ | | | Krebs Cycle
(Citric Acid) | |-------------------|------------------------------| | Start
Molecule | 2 Acetyl-CoA | | АТР | | | FADH ₂ | | | NADH | | | End
Molecule | Oxaloacetate | | MEMORY TOOL 3: | u | _er trees in a forest, there lived 5 _ | | | | 5r | its and 6 | lies | |----------------|---|--|----------|--|-----------------|----|--------------------|--------| | u_ | u | er_ | _'s in a | | , there lived 5 | n | ts and 6 $_{ m -}$ | _lies. | | EXAMPLE: How many reactions in the citric acid cycle produce high-energy molecules? | | | | | | |--|--|--|--|--|--| | a) 4 | | | | | | | b) 5 | | | | | | | c) 3 | | | | | | | d) 6 | | | | | | | | | | | | | **PRACTICE:** Which reaction of the citric acid cycle produces NADH from the choices provided? a) Reaction 3 b) Reaction 5 c) Reaction 2 d) Reaction 6 e) Reaction 1 f) None of these