
- The electron _____ of pyridine makes it more susceptible to nucleophilic aromatic substitution than benzene.
 - □ Two major S_NAr reactions of pyridine involve substitution on the ____-position.
 - 1 Chichibabin Reaction: typical S_NAr of _____ onto the pyridine ring.
 - 2 Organometallic Reactions: S_NAr of an _____ onto the pyridine ring.

1 Chichibabin Reaction

• A method to create _____pyridine by reacting pyridine with sodium amide.

• **Recall:** Nucleophilic Aromatic Substitution occurs by an _____ mechanism.

EXAMPLE: Provide the mechanism for the Chichibabin reaction of 4-methylpyridine.

STEP 1: Amide ion attacks the *o*-position of pyridine, forming a ______ intermediate.

STEP 2: The N atom reforms the double bond, kicking out the H as a ______ ion to restore _____.

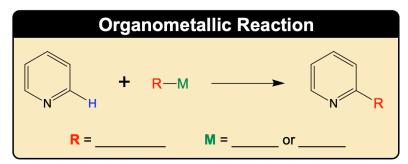
STEP 3a: ______ of the amino group by the hydride ion.

STEP 3b: ______ of the conjugate base anion by water forms 2-aminopyridine.

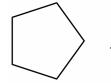
PRACTICE: Select the best set of reagents for the following synthesis.

a) 1) NaNH₂, NH₃ 2) H⁺, H₂O 3) NaNO₂/HCl; 4) NaCN/DMSO; 5) CH₃l; 6) Br₂/h ν

b) 1) NaNH₂, NH₃ 2) H⁺, H₂O 3) NaNO₂/HCl; 4) H₃O⁺; 5) NaOH; 6) CH₃CH₂CH₂Br

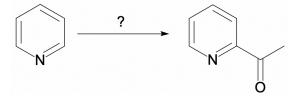

c) 1) NaNH₂, NH₃ 2) H⁺, H₂O 3) NaNO₂/HCl; 4) HBF₄; 5) CH₃l; 6) Br₂/h ν

d) 1) NaNH₂, NH₃ 2) H⁺, H₂O 3) NaNO₂/HCl; 4) H₃O⁺; 5) H₃PO₃; 6) CH₃CH₂CH₂Br


PRACTICE: Starting from pyridine, use your knowledge of diazonium salts and the Chichibabin Reaction to synthesize the following product.

2 Organometallic Reactions

• Treatment of pyridine with either a Grignard or organolithium reagent to produce an _____ pyridine ring.


EXAMPLE: Predict the final product based on the list of reagents given.

- 1. Br₂/hv
- 2. Mg, ether
- 3. Pyridine

PRACTICE: Determine the final product for the following reaction.

PRACTICE: Propose a synthetic route for the following transformation.

