CONCEPT: STEP-GROWTH POLYMERS: POLYURETHANE MECHANISM ## Polyurethane Formation Mechanism • Polyurethanes are created from the nucleophilic addition of a ____ol to a ______ □ It is produced commercially as a _____(___-toluene diisocyanate : ____-toluene diisocyanate) mixture. ☐ The formation mechanism has _____ required steps. **EXAMPLE:** Provide the mechanism for the reaction between toluene diisocyanate and methylene diol. Step 1 Nucleophilic Attack Step 2a Proton Transfer Step 2b Protonation **STEP 1:** Nucleophilic alcohol attacks the carbonyl _____ of isocyanate. STEP 2a: ______ of the alkoxyl group by second diol. **STEP 2b:** ______ of the isocyanate ____ by protonated alcohol to form urethane. □ This urethane represents a _____ than can be elongated as needed. | CONCEPT: STEP-GROWTH POLYMERS: POLYURETHANE MECHANISM | |---| | PRACTICE: Determine the monomer created from the reaction between toluene diisocyanate and ethylene diol. | | | | | | | | | | | | | | PRACTICE: Provide the mechanism for the reaction between toluene diisocyanate and butane-2,3-diol. | | | | | | | | | | | | | | | | |