CONCEPT: EAS REACTIONS OF PYRIDINE

- Unlike the 5-membered aromatic heterocycles, pyridine is significantly _____ reactive than benzene.
 - □ Pyridine ring is electron _____. □ N gets a __ charge under EAS conditions.

• _____ groups can help pyridine undergo EAS reactions more effectively.

EXAMPLE: Unlike pyrrole, pyridine undergoes nitration under extreme conditions. Why?

- a) Pyridine tends to form radicals under acidic conditions, making nitration reaction difficult.
- b) Pyridine ring (through C3) attacks the protons instead of the nitronium ion.
- c) Under nitration conditions, the N atom in the pyridine ring is protonated, which makes carbocation formation difficult.
- d) Pyridine undergoes nitration in multiple steps, requiring a lot of energy.

Substitution at C2 vs C3 vs C4

- EAS reactions of pyridine yield products by substitution at _____.
 - □ Substitution at C__ and C__ usually _____ take place.

CONCEPT: EAS REACTIONS OF PYRIDINE

EXAMPLE: Why does the pyridine ring not undergo nitration at C4?

- a) Being the farthest from the nitrogen, the C4 position is the least activated.
- b) The reaction intermediate has an electron-deficient nitrogen atom with a + charge.
- c) The pyridine ring is more easily nitrated at the nitrogen atom instead of C4.
- d) The C4 position gets protonated under the acidic conditions of nitration.

Directing Effects in Substituted Pyridines

- Similar to 5-membered heterocycles, o, m, and p positions are assigned through the C framework.
- RULE 1: Directing effects are the _____ as EAS on benzene rings.
 For polysubstituted rings, the most _____ group takes precedence.
- **RULE 2:** C__ substitution is always preferred.

Directing Groups			
ortho/para	meta		
_N:	$-NO_2$		
-o:	$-NR_3^+$		
_N	−SO ₃ H		
⊢R ^O	-CN		
_x	-C=O		

EAS Directing Effects			
Reactant	Reagents	Directing Effect	Product
OCH ₃	Br ₂ /FeBr ₃ 100 °C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OCH₃
COOH	HNO ₃ /H ₂ SO ₄ 300 °C	COOH → N →	COOH

EXAMPLE: Predict the product of the following reaction.

$$H_3C$$
 H_2N
 N
 $Br_2/FeBr_3$

CONCEPT: EAS REACTIONS OF PYRIDINE

PRACTICE: Draw the structures of products A, B, and C in the following reaction sequence.

PRACTICE: Pyrrolopyridines are a group of fused heterocycles where a pyrrole ring is fused with a pyridine ring. Nitration of the following pyrrolopyridine produces the 7-nitro product while the 5-nitro product is not seen. Draw resonance structures to show why the 5-nitro product is not formed. (Hint: Draw 5 resonance structures).