CONCEPT: EAS REACTIONS OF PYRIDINE - Unlike the 5-membered aromatic heterocycles, pyridine is significantly _____ reactive than benzene. - □ Pyridine ring is electron _____. □ N gets a __ charge under EAS conditions. • _____ groups can help pyridine undergo EAS reactions more effectively. **EXAMPLE:** Unlike pyrrole, pyridine undergoes nitration under extreme conditions. Why? - a) Pyridine tends to form radicals under acidic conditions, making nitration reaction difficult. - b) Pyridine ring (through C3) attacks the protons instead of the nitronium ion. - c) Under nitration conditions, the N atom in the pyridine ring is protonated, which makes carbocation formation difficult. - d) Pyridine undergoes nitration in multiple steps, requiring a lot of energy. # Substitution at C2 vs C3 vs C4 - EAS reactions of pyridine yield products by substitution at _____. - □ Substitution at C__ and C__ usually _____ take place. ### **CONCEPT:** EAS REACTIONS OF PYRIDINE **EXAMPLE:** Why does the pyridine ring not undergo nitration at C4? - a) Being the farthest from the nitrogen, the C4 position is the least activated. - b) The reaction intermediate has an electron-deficient nitrogen atom with a + charge. - c) The pyridine ring is more easily nitrated at the nitrogen atom instead of C4. - d) The C4 position gets protonated under the acidic conditions of nitration. # **Directing Effects in Substituted Pyridines** - Similar to 5-membered heterocycles, o, m, and p positions are assigned through the C framework. - RULE 1: Directing effects are the _____ as EAS on benzene rings. For polysubstituted rings, the most _____ group takes precedence. - **RULE 2:** C__ substitution is always preferred. | Directing Groups | | | | |------------------|--------------------|--|--| | ortho/para | meta | | | | _N: | $-NO_2$ | | | | -o: | $-NR_3^+$ | | | | _N | −SO ₃ H | | | | ⊢R ^O | -CN | | | | _x | -C=O | | | | EAS Directing Effects | | | | |-----------------------|--|--|---------| | Reactant | Reagents | Directing Effect | Product | | OCH ₃ | Br ₂ /FeBr ₃ 100 °C | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | OCH₃ | | COOH | HNO ₃ /H ₂ SO ₄
300 °C | COOH →
N → | COOH | **EXAMPLE:** Predict the product of the following reaction. $$H_3C$$ H_2N N $Br_2/FeBr_3$ #### **CONCEPT:** EAS REACTIONS OF PYRIDINE **PRACTICE:** Draw the structures of products A, B, and C in the following reaction sequence. **PRACTICE**: Pyrrolopyridines are a group of fused heterocycles where a pyrrole ring is fused with a pyridine ring. Nitration of the following pyrrolopyridine produces the 7-nitro product while the 5-nitro product is not seen. Draw resonance structures to show why the 5-nitro product is not formed. (Hint: Draw 5 resonance structures).