The _	negative charges of a phosphate anhydride make its P atoms resistant to nucleophilic attack.				
		ion and a class of enzymes called	pyrophosphat	_ reduces the overal	I negative charges.
	□ Phosp	hate Anhydride-Mg Complex: The ionic bo	nds that form betweer	n phosphoryl a	atoms and

Enzyme-Catalyzed NAS Mechanism

• After Mg complex formation, phosphate anhydrides react with nucleophiles at ___-phosphate position via NAS mechanism.

EXAMPLE: Provide the mechanism for the enzyme-catalyzed reaction between ATP and a nucleophile.

Step 0 Step 1 Step 2 Step 3 Leaving Group

STEP 0: The _____ ion forms an ionic bond with ____ of the negatively charged oxygens of phosphate anhydride.

STEP 1: Nucleophile attacks the phosphoryl _____.

STEP 2: A proton is transferred from the ____ charged nucleophile to the O between the ____ or ___ P atoms.

STEP 3: An ____ atom pushes its lone pair to kick out ADP as the ____ ion is also released.

Reactions of ATP

• Upon Mg complex formation, ATP can react with a nucleophile at the _____phosphate position.

1) **Hydrolysis:** Reaction of ATP with _____.

2) Alcoholysis: Reaction of ATP with _____.

3) NAS of COOH: Reaction of ATP with _____.

EXAMPLE: What products are formed when ethanol reacts with ATP in the presence of Mg²⁺ and its necessary pyrophosphatases?

PRACTICE: Write a mechanism for enzyme-catalyzed hydrolysis of the ATP molecule.

PRACTICE: Provide final product from the reaction of aspartic acid, ATP and ethylamine.

a)
$$H_3N_{\text{CO}_2}$$
 b) $H_3N_{\text{CO}_2}$ CO_2