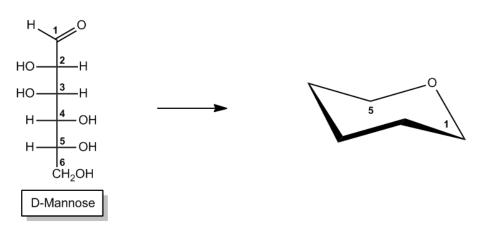
CONCEPT: MONOSACCHARIDES — CYCLIZATION


In aqueous solutions, monosaccharides are most stable in a cyclic form.

- □ Furanose = ____-carbon cyclic sugar
- □ Pyranose = ____-carbon cyclic sugar
- Nucleophilic addition of the **penultimate alcohol** to the electrophilic carbonyl carbon leads to cyclization
 - □ The carbonyl carbon is ______, so it can be attacked from either the top or bottom
 - □ When monosaccharides *cyclize*, two different C-1 *epimers* are possible. These are known as *anomers*
 - The α-anomer = anomeric oxygen is _____ with the *stereodescriptor* (C-5) carbon
 - The β-anomer = anomeric oxygen is _____ with the stereodescriptor (C-5) carbon

"Downright"

- □ The OH's on the _____ in the straight chain point ____ in the ring
- $\hfill\Box$ The OH's on the _____ in the straight chain point ____ in the ring
 - D-Sugars: Stereodescriptor (C-5) faces _____ on the ring

 $\mbox{\bf PRACTICE:} \ \mbox{Draw the β-anomer predicted through the cyclization of D-mannose.}$

