CONCEPT: TRIACYLGLYCEROL REACTIONS: HYDROGENATION

- **Recall:** Under this type of reaction $__$ Hs are added to $__$ π bond.
 - □ The conversion from double bonds to single bonds ___ unsaturation & ___ melting point.

- Partial hydrogenation converts oils to _____ whose ultimate consistency is based on the ____ of pi bonds.
 - □ During hydrogenation, some of the double bonds can isomerize to produce _____ (___-configuration) pi bonds.

EXAMPLE: Identify the number moles of hydrogen required for the complete hydrogenation of the following compound.

CONCEPT: TRIACYLGLYCEROL REACTIONS: HYDROGENATION

PRACTICE: Determine a possible triacylglycerol molecule formed when linoleic acid undergoes partial hydrogenation and consumes 1 mole of hydrogen gas.

- a) Palmeitoleic acid
- b) Stearic acid
- c) Linolenic acid
- d) Oleic acid

PRACTICE: A triacylglycerol molecule in the form of linoleic acid consumes 2 moles of hydrogen gas. Which of the following fatty acid represents the product formed?

- a) Myristic acid
- b) Stearic acid
- c) Palmitic acid
- d) Oleic acid

PRACTICE: Assuming a complete reaction with hydrogen gas, which of the following molecules would have the greatest increase in melting point?

$$\begin{array}{c} H_2C \longrightarrow 0 \\ \\ H_2C \longrightarrow 0 \\ \\ \end{array}$$