CONCEPT: ZIEGLER-NATTA POLYMERIZATION

- Ziegler-Natta Polymerization is highly stereo ______ for isotactic and syndiotactic polymers.
 - □ Uses **Ziegler-Natta catalyst:** organometallic complex most commonly containing ____ and ____.
 - Polymer stereochemistry is _____ specific.
- No radicals are formed which results in _____ polymers.

Mechanism

- 1 Activation: Ziegler-Natta catalyst is ______.
- 2 Coordination: Electrons from ____ bond of C_H₂_ alkene monomer share with ____.
- 3 Chain-Growth: Electrons from Ti Et group shift and monomer is inserted between ____ and ____ group.
 - □ Steps ___ and ___ are repeated as needed.

• Ziegler-Natta catalysts cannot be used with monomers containing _____ groups as it deactivates the catalyst.

EXAMPLE: Polypropylene is polymerized using a Ziegler-Natta catalyst which selects for isotactic stereochemistry. Draw a segment of the resulting polymer.