CONCEPT: ZIEGLER-NATTA POLYMERIZATION - Ziegler-Natta Polymerization is highly stereo ______ for isotactic and syndiotactic polymers. - □ Uses **Ziegler-Natta catalyst:** organometallic complex most commonly containing ____ and ____. - Polymer stereochemistry is _____ specific. - No radicals are formed which results in _____ polymers. ## **Mechanism** - 1 Activation: Ziegler-Natta catalyst is ______. - 2 Coordination: Electrons from ____ bond of C_H₂_ alkene monomer share with ____. - 3 Chain-Growth: Electrons from Ti Et group shift and monomer is inserted between ____ and ____ group. - □ Steps ___ and ___ are repeated as needed. • Ziegler-Natta catalysts cannot be used with monomers containing _____ groups as it deactivates the catalyst. **EXAMPLE:** Polypropylene is polymerized using a Ziegler-Natta catalyst which selects for isotactic stereochemistry. Draw a segment of the resulting polymer.