
CONCEPT: THERMODYNAMICS OF CHAIR FLIPS

Sometimes we'll be asked to calculate the energy required (kJ/mol) to flip chairs into the axial position.

A-Values: 1,3-Diaxial Interactions for Common Substituents (\(\Delta G^\))

(Energy Difference Between Axial and Equatorial)

	Group	kJ/mol	Group	kJ/mol		Group	kJ/mol	
l	—н	0	— F	1		— CN	0.8]
l	<u>—</u> Ме	7.6	_	1.9		—c≡c	1.7]
l	— Et	8	<u>—</u> сі	2.2		— он	4.2]
	— <i>t-</i> Ви	22.8	<u>—</u> Вг	2.4		C ₆ H ₅	12.6]
					•			

PRACTICE: Calculate the difference in Gibbs free energy in (kJ/mol) **and** (kcal/mol) between the alternative chair conformations of the following disubstituted cyclohexanes:

a. trans-4-iodo-1-cyclohexanol

b. cis-2-ethyl-1-phenylcyclohexane