CONCEPT: STRUCTURE DETERMINATION – MOLECULAR SENTENCES

The holy grail of this section is **structure determination**.

- You may be asked to produce a structure from scratch given only a MF, NMR Spectrum and IR Spectrum.
- Our goal is to build a strong "molecular sentence" by gathering clues, then propose drawings.

How to build a molecular sentence:

4	 		rmine			_
1	l ∖∧t/	٦rm	ın	^ II	ш	١١.
		71111		- II		•

2.	Analyze NMR,	IR and splittir	ng patterns	, integrations	for major	clues	(i.e.)	١.
----	--------------	-----------------	-------------	----------------	-----------	-------	--------	----

- NMR = 9.1 ppm ______ • IR = 1710 cm⁻¹ _____
- Triplet/Quartet

- 9.1 ppm (2H)
- 3. Calculate ¹H NMR Signal : Carbon Ratio.
 - ullet Ratio < 1/2 suggests symmetrical, whereas ratio > 1/2 suggests asymmetrical
 - □ Never rule out a structure based on symmetry (you may not be able to visualize it)
- 4. State the number of ¹H NMR signals needed.
 - --- DRAW POSSIBLE STRUCTURES ---
- 5. Use a combination of Shifts, Integrations, and Splitting to *confirm* which structure is correct.

EXAMPLE: Build a strong molecular sentence using the following data.

MF: $C_4H_6O_2$ **IR**: peak at 2950 cm⁻¹ $\frac{1H \text{ NMR}}{}$

peak at 2700 cm⁻¹ - **2.2 (doublet, 4H)**

peak at 1720 cm⁻¹ - **9.4 (triplet, 2H)**

PRACTICE: Propose a structure for the following compound that fits the following ¹H NMR data:

Formula: $C_3H_8O_2$ ¹H NMR: 3.36 δ (6H, singlet)

4.57 δ (2H, singlet)

<u>PRACTICE:</u> Propose a structure for the following compound that fits the following ¹H NMR data:

Formula: $C_2H_4O_2$ ¹H NMR: 2.1 δ (singlet, 1.2 cm)

11.5 δ (0.5 cm, D₂O exchange)

PRACTICE: Propose a structure for the following compound that fits the following ¹H NMR data:

Formula: C₁₀H₁₄
¹H NMR: 1.2 ppm (6H, doublet)

2.3 ppm (3H, singlet)

2.9 ppm (1H, septet)

7.0 ppm (4H, doublet)

<u>PRACTICE:</u> Propose a structure for the following compound, C₇H₁₂O₂ with the given ¹³C NMR spectral data:

Broadband decoupled ^{13}C NMR: 19.1, 28.0, 70.5, 129.0, 129.8, 165.78 $\pmb{\delta}$

DEPT-90: 28.0, 129.8 δ

DEPT-135: 19.1 δ (\uparrow), 28.0 (\uparrow), 129.8 δ (\uparrow), 70.5 δ (\downarrow) & 129.0 δ (\downarrow)

<u>PRACTICE:</u> Propose a structure for the following compound, C₅H₁₀O with the given ¹³C NMR spectral data:

Fully Broadband decoupled ^{13}C NMR and DEPT: 206.0 δ (\uparrow); 55.0 δ (\uparrow); 21.0 δ (\downarrow) & 11.0 δ (\uparrow).

<u>PRACTICE:</u> Provide the structure of the unknown compound from the given information.

Formula: C₄H₁₀O IR: 3200-3600 cm⁻¹ ¹H NMR: 0.9 ppm (6H, doublet)

1.8 ppm (1H, nonatet)

2.4 ppm (1H, singlet)

3.3 ppm (2H, doublet)

<u>PRACTICE:</u> Provide the structure of the unknown compound from the given information.

Formula: C₄H₉N IR: 2950 cm⁻¹, 3400 cm⁻¹ ¹H NMR: 1.0 ppm (4H, triplet)

2.1 ppm (4H, triplet)

3.2 ppm (1H, singlet)