CONCEPT: COORDINATION COMPLEXES

- The most prevalent feature of transition metal chemistry is the formation of coordination complexes or compounds.
 - □ These structures are composed of a *complex ion* that is connected to anions or molecules called ______.
 - □ In order to maintain the overall neutrality of the compound a is used.

[Ni(NH ₃) ₄]Cl ₂		+	
	\	\	

Coordination Numbers

- The coordination number is the number of ligands bonded to the central metal cation.
 - ☐ The most common coordination numbers are _____, and _____.

EXAMPLE: Correctly label all the components of the coordination complex: Na₂[SnCl₆].

EXAMPLE: Determine the number of ligands in the complex ion: [Cr(H₂O)₄Br₂]F.

Molecular Geometry of Coordination Complexes

• Coordination complexes form predictable geometries based on their coordination and their electron configuration.

Coordination Number	Configuration	Geometry	Example
2			
4			
4			
6			

□ Coordination of 4: A _____ electron configuration forms tetrahedral complexes. _____ forms square planar complexes.

CONCEPT: COORDINATION COMPLEXES EXAMPLE: Determine the geometry for the following complex ion: $[Cr(NH_3)_4Cl_2]^+$. **PRACTICE**: Determine the geometry for the following complex molecule: Pd(H₂O)₄.