CONCEPT: HYDROLYSIS OF PHOSPHATE ESTERS

Intro to Phosphate Esters

• Depending on the number of alkyl groups, phosphate esters can be of _____ types.

• The reactivity of phosphate esters towards hydrolysis ____ as the charge on the molecule ____.

EXAMPLE: Arrange the following compounds from least reactive to most reactive in a saponification reaction.

a) | < || < |||

b) III < II < I

c) || < | < |||

d) ||| < | < ||

CONCEPT: HYDROLYSIS OF PHOSPHATE ESTERS

Phosphate Triester Saponification

- Basic hydrolysis of phosphate triesters can proceed through _____ possible mechanisms.
 - 1 P-O Bond Cleavage: nucleophilic acyl substitution at the P atom.
 - (2) C-O Bond Cleavage: S_N2 substitution at the C atom.

1 P-O Bond Cleavage

• Similar to the attack on the carbonyl C, a nucleophile attacks the P atom in the P–O bond cleavage mechanism.

Step 1

Nucleophilic Attack

Step 2

Leaving Group

Step 3

Proton Transfer

STEP 1: Hydroxide ion attacks the ____ atom, forming a trigonal bipyramidal intermediate (______-coordinated).

STEP 2: The intermediate collapses and an alkoxide is kicked out.

STEP 3: The alkoxide anion deprotonates the protonated dialkyl phosphate.

EXAMPLE: What products are formed when the following ester undergoes complete saponification:

$$H_3CO-P-OCH_3$$
 OH^-/H_2O $OCH(CH_3)_2$

CONCEPT: HYDROLYSIS OF PHOSPHATE ESTERS

2 C-O Bond Cleavage

- The OH⁻ ion can attack the ____-carbon of an alkyl group to give products via the S_N2 mechanism.
 - □ A dialkyl phosphate and an _____ are formed in a single step.

• Phosphate esters with _____, ___ alkyl groups prefer the C–O bond cleavage mechanism.

EXAMPLE: Write a mechanism for the basic hydrolysis of trimethyl phosphate. (For one alkyl group only.)

$$\begin{array}{c} O \\ II \\ H_3CO-P-OCH_3 \\ OCH_3 \end{array} \qquad \begin{array}{c} OH^-/H_2O \\ \end{array}$$

PRACTICE: Draw the mechanism for the hydrolysis of the benzyl group in benzyl dimethyl phosphate.

$$\begin{array}{c} O \\ II \\ H_3CO-P-OCH_3 \\ I \\ OCH_2C_6H_5 \end{array} \longrightarrow \begin{array}{c} OH^-/H_2O \\ \end{array}$$