CONCEPT: CUMULATIVE ELECTROCYCLIC REACTIONS

Step 1: Determine ROTATION (conrotatory vs. disrotatory)

- a. Obtain HOMO through combination of drawing molecular orbitals + activation type —OR—
- b. Use Electrocyclic Rotation Summary Chart:

π-bonds	Activator	Rotation	_
Even	Thermal	Conrotatory	"Etc."
Odd	Photochemical	Conrotatory	
Even	Photochemical	Disrotatory	
Odd	Thermal	Disrotatory	

Step 2: Determine STEREOCHEMISTRY

- a. Obtain final structure by drawing <u>3D-representation</u> + <u>ROTATION</u> *OR*—
- b. Use Electrocyclic Stereochemistry Summary Chart

π -bonds Rotation Ring			
Same	Disrotatory	CIS	
Different	Conrotatory	CIS	
Same	Conrotatory	TRANS	
Different	Disrotatory	TRANS	

"Same? DIS is CIS"

PRACTICE: Use the summary charts to predict the product of the following reactions. If there is more than one isomer possible, draw them.

a.

b.

PRACTICE: Electrocyclic reactions are not limited to neutral conjugated polyenes, but are also applicable to ionic conjugated systems. Propose a mechanism and product for the following reaction.

