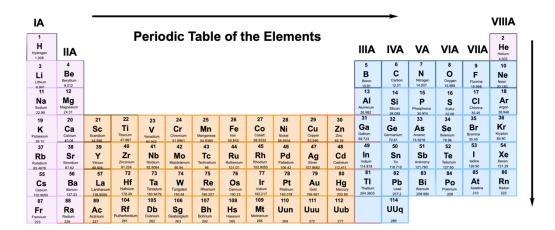
CONCEPT: FACTORS AFFECTING ACIDITY- ELEMENT EFFECTS


_					_	
There are 5 major factor		- 11 f1 1-			fallaa. 4a	-:11:
i nere are a maior tactor	e of acidity and He	a thaga tarthre tr	i netermine reiative	acinity in the	TOUOWING TWO	citi latione.
	3 OI acially, yyo as	G แบบงับ เดิบเบเง เน	, acterrine relative	acially ill lile	IUIIUVVIIIU LVVU	situations.

1. pKa information is	for a molecule
1. DNA 1111011111A11011 15	ioi a molecule

- 2. The pKas of two molecules are ______ to make a determination of highest acidity.
- □ When analyzing these 5 factors of molecules, look at the stability of the ______
 - The more stable the _____, the more willing the acid will be to donate a proton.

1. Element Effects:

- The element effects determine how loosely or strongly a particular element bonds with _____
- We can use these effects to compare different protonated elements to each other. (i.e. NH_{3 vs} SH₂)
- Consists of two trends:
 - 1. Electronegativity the stronger the electronegativity, the more willing to accept a lone pair.
 - 2. Size the bigger (squishier) the atom, the more willing it will be to accept a lone pair.

EXAMPLE: Without using pKa values, which of the following pairs is more acidic?

1. NH₃ or SH₂ 2. H₂O or CH₄

3. o or H or HF

CONCEPT: FACTORS AFFECTING ACIDITY- INDUCTIVE EFFECTS

Inductive effects describe the stabilizing properties that ______ atoms <u>NOT CONNECTED</u> to the acidic hydrogen have on the overall acidity.

- Whenever a charge can be _____ over more than one atom, the more stable that charged species will be .
- Electronegative entities on <u>other parts</u> of the molecule can help "spread out" the negative change of the conjugate base through inductive effects.

EXAMPLE: Draw rough sample electron clouds over the following pairs of conjugate bases of their respective alcohols. Which is more stable? Which alcohol would have had the lower pKa?:

Factors that increase inductive effects:

- 1. Strength of the electronegative entities _____
- 2. Number of electronegative entities _____
- 3. Proximity of electronegative entities _____

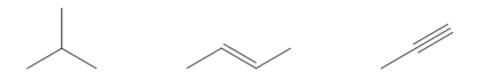
EXAMPLE: Without using pKa values, which of the following pairs is more acidic?

CONCEPT: FACTORS AFFECTING ACIDITY- OTHER EFFECTS

Resonance Effects:

<u>Definition:</u> Whenever the donation of a proton leads to the formation of a possible ______, that conjugate base will be _____ stable, and the molecule will be a _____ acid.

EXAMPLE: Which of the following pairs of acids would have the lower pKa? Explain why.



Hybridization Effects:

<u>Definition</u>: The more s-character in the acid, the closer to the nucleus extra lone pairs will be held to it, making the conjugate base ______ stable.

Acidity Trend = sp C - H $sp^2 C - H$ $sp^3 C - H$

EXAMPLE: Which of the following hydrocarbons is the most acidic?

Steric Effects:

Particularly with alcohols, the more easily solvated the conjugate base is, the more stable it will be.

- The smaller the R group, the more _____ the alcohol
- The bigger the R group, the more _____ the alkoxide

EXAMPLE: Which of the oxides is the most basic?

CONCEPT: FACTORS AFFECTING ACIDITY- OTHER EFFECTS

PRACTICE: Would the following reactions go to the right or the left? Draw the products and label ALL species. Provide the full mechanism.