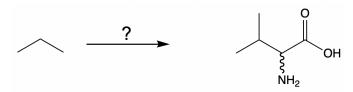

CONCEPT: AMINO ACID SYNTHESIS: HVZ METHOD

- The Hell-Volhard-Zelinsky (HVZ) Method = HVZ Reaction + _____.
 - □ Takes place in __ steps:
 - 1 HVZ Reaction: a ____ atom displaces the ____ atom of a carboxylic acid.
 - 2 Amination: Ammonia attacks the _____ atom in an ____ reaction.

EXAMPLE: Identify the amino acid formed from the following synthetic route.

a) Glycine

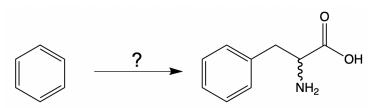

b) Alanine

- c) Aspartic acid
- d) Lysine

PRACTICE: Predict the final product based on the list of reagents given.

CONCEPT: AMINO ACID SYNTHESIS: HVZ METHOD

PRACTICE: Beginning from propane, select the best reagents provided to synthesize valine via the HVZ method.


- a) 1. Br₂/hv 2. Mg, ether 4. H₃O⁺ 5. KMnO₄, H₂O
- 1. Na₂Cr₂O₇ 2. H₃O⁺ 3. Br 4. Br₂, PBr₃
- 1. Br₂/hv 2. Mg, ether 3. 4. H₃O⁺ 5. Br₂, PBr₃
- 1. Br₂/hv 2. Mg, ether 0 4. H₃O⁺ 5. KMnO₄, H₂O 6. Br₂, PBr₃ 7. NH₃, H₂O

d)

- 6. Br₂, PBr₃ 7. NH₃, H₂O
- 5. NH₃, H₂O
- 6. NH₃, H₂O

PRACTICE: Beginning from benzene, provide the chemical steps needed to prepare phenylalanine via HVZ method.

c)

- 1. CH₃Br/AlBr₃ 2. KMnO₄, H₂O 3. Mg, ether 0
 - 5. H₃O⁺
 - 6. KMnO₄, H₂O 7. Br₂, PBr₃ 8. NH₃, H₂O
- 1. CH₃Br/AlBr₃ 2. Mg, ether 3. O 4. H₃O⁺
 - 5. KMnO₄, H₂O
 - 6. Br₂, PBr₃ 7. NH₃, H₂O
- 2. Br₂/hv 3. Mg, ether 0 5. H₃O⁺

1. CH₃Br/AlBr₃

- 6. KMnO₄, H₂O 7. Br₂, PBr₃ 8. NH₃, H₂O
- 1. CH₃Br 2. Br₂/hv 3. Mg, ether 0 5. H₃O⁺ 6. KMnO₄, H₂O 7. Br₂, PBr₃

8. NH₃, H₂O