CONCEPT: ANAEROBIC RESPIRATION

• Without O₂, pyruvate is redirected through fermentation.

- Fermentation: generation of energy in the absence of oxygen.
 - □ In the absence of _____, fermentation regenerates _____ allowing glycolysis to continue.

Lactate Fermentation

- Process occurs in animal _____ cells during strenuous activity.
- Pyruvate is _____ by lactate dehydrogenase to _____.
 - □ 1 NADH is oxidized to 1 _____

CONCEPT: ANAEROBIC RESPIRATION

Alcohol Fermentation

- Process by which certain _____ and yeast convert pyruvate to _____ and CO₂.
- Pyruvate is reduced to ethanol by a _____ step process.
 - □ 1 C atom is lost as _____.
- C=O
 C=O
 Pyruvate
 Decarboxylase
 CH₃
 Pyruvate

□ 1 NADH is oxidized to 1 _____.

EXAMPLE: Pyruvate is converted into ethanol and CO₂ by which of the following enzymatic reactions?

- a) Pyruvate is directly converted to ethanol by alcohol dehydrogenase.
- b) Pyruvate is converted to acetaldehyde by pyruvate decarboxylase, then reduced to ethanol by alcohol dehydrogenase.
- c) Pyruvate is converted to lactate by lactate dehydrogenase, followed by conversion to ethanol by lactate reductase.
- d) Pyruvate is converted to ethanol by oxidative decarboxylation.

PRACTICE: Select the best statement about fate of pyruvate.

- a) Conversion of pyruvate to lactate is irreversible because it is an oxidation reaction.
- b) Conversion of pyruvate to lactate involves reduction of aldehyde group of pyruvate.
- c) Conversion of pyruvate to acetaldehyde is irreversible because it is a reduction reaction.
- d) Pyruvate oxidation involves transfer of acetyl group to CoA.
- e) Both fermentation and pyruvate oxidation produce NAD+.

CONCEPT: ANAEROBIC RESPIRATION

PRACTICE: Select statement that explains importance of conversion of NADH to NAD+ during anaerobic respiration.

- a) Cells rely on glycolysis to produce ATP and NAD+ in the absence of oxygen.
- b) Conversion of glucose to pyruvate in glycolysis requires NAD+ as an electron acceptor.
- c) Allows for conversion of glucose to Acetyl CoA in the absence of oxygen.
- d) Regeneration of NAD+ through fermentation ensures that glycolysis will come to a halt.

PRACTICE: Circle the correct type of respiration under which:

- a) Pyruvate converted to lactate (aerobic or anaerobic)
- b) Glucose converted to pyruvate (aerobic or anaerobic)
- c) Pyruvate converted to Acetyl CoA (aerobic or anaerobic)
- d) Pyruvate converted to ethanol (aerobic or anaerobic)